
1
Journal of Music Theory  67:1, April 2023
DOI 10.1215/00222909-10232057  © 2023 by Yale University

Approximate Set Theory 
Chord Categories, Voicings, and Interval Cycles

Dmitri Tymoczko

Abstract  This article describes an approximate set theory modeling intuitions shared by musicians such 
as Cowell, Schoenberg, Messiaen, and Persichetti. The author considers five approximation strategies, 
showing that in each case the result resembles an exact seven-tone set theory. Since most seven-tone sets 
are interval cycles, approximate twelve-tone sets are approximately cyclic as well. The theory explains 
how to highlight this cyclic structure using voicings, modeled by intervals in the intrinsic scale formed from 
a chord’s own notes. This connection to voicing is what gives approximate chord categories much of their 
significance. The approach is most useful for chords with five or fewer notes and works tolerably for hexa
chords, but it breaks down with larger collections. This is not a failure of the model but a reflection of the 
fact that quality space contracts as cardinality increases.
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Approximate interval categories are a staple of informal musical discourse; 
musicians of all stripes speak of steps and thirds, or clustered and quartal harmonies. 
Approximate terminology has the cognitive advantage of reducing our harmonic 
taxonomy and the perceptual advantage of ref lecting the often imprecise nature 
of musical experience: rather than requiring (or postulating, or hoping) that lis­
teners maintain an exact tally of all the intervals they hear, generic qualia (e.g., 
tertian, quartal) allow for a degree of listener imperfection. Analysts frequently 
encounter passages saturated with a single type of generic interval, for example, 
an abundance of major and minor thirds or perfect and augmented fourths.1 And 
as we will see, approximate categories highlight compositional affordances that 
might otherwise go unnoticed.

Yet academic music theory tends to valorize exact relationships. This is 
most obviously true of musical set theory, which categorizes chords by exact inter­
val content, measured along the diatonic, chromatic, or some other scale. It is also 
a feature of twelve-tone music, which emphasizes rigid transformations of ordered 

1  The distinction between “generic” and “specific” intervals originates with Clough and Myerson 1985, though that work 
emphasizes scale membership rather than direct categorization of chromatic intervals.

Thanks to Brad Gersh, Daniel Harrison, Andrew Mead, Ian Quinn, Steve Taylor, and Jason Yust for helpful discussions and 
comments.
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2 J O U R N A L  o f  M U S I C  T H E O R Y

collections.2 It is even characteristic of approaches that group sets into larger cat­
egories or genera. Ian Quinn (2001) has surveyed a range of such classification 
schemes, showing that they tend to converge: typically, chromatic intervals are 
treated as separate and unrelated qualia, or perhaps arranged along an unbroken 
continuum from small to large. The implicit picture seems to be of a two-stage 
process: first listeners flawlessly perceive the total interval content in a passage; 
then they construct categories by judiciously ignoring some of this information.3

This article instead begins with generic intervallic categories, such as second, 
third, and fourth, using these to reconstruct an analogue to traditional set theory. 
Though the resulting categories are approximate, they still allow for precise analyt­
ical observations. For example, I will show that there are just four kinds of approx­
imate trichords: three are cyclic (cluster, tertian, quartal), and the fourth is equally 
balanced between cycles; each type presents distinct opportunities to a composer 
or improviser. Meanwhile, there are five kinds of approximate tetrachord: the four 
trichordal categories along with a smaller class of “noncyclic” outliers. As chords 
grow, the number of categories shrinks: there are only four kinds of approximate 
pentachord, and there is little or no difference among clustered, tertian, and quartal 
hexachords; instead, the clusters become more and more predominant. Larger col­
lections therefore require new strategies, which is why I focus on smaller sets here.

The resulting framework suggests that our conception of chord quality is 
fundamentally ambiguous. For small chords, terms such as clustered and quartal 
can be taken to describe an intrinsic structure that persists regardless of how the 
set is arranged in register; for larger chords, however, these same terms are best 
understood as ways of distributing notes. Consider the pitch classes {C, D, E, F, 
G, A}. These can be arranged as the cluster (C4, D4, E4, F4, G4, A4), the stack of 
thirds (D4, F4, A4, C5, E5, G5), and the stack of fourths (E3, A3, D4, G4, C5, F5). 
Musicians can make these different qualia salient depending on what they do with 
the pitch-class set: hearing the stack of thirds (D4, F4, A4, C5, E5, G5), we may 
not even realize that we are in the presence of a cluster. This sort of multivalence is 
unknown in the chromatic universe, where collections are almost never cyclic with 
respect to multiple intervals; in the approximate universe it is just a fact of life.4

It is just here that approximate set theory intersects with a second and 
seemingly unrelated topic, the theory of voicing, understood as the systematic 
study of how pitch-class sets can be arranged in register. This is because we can 

3  I have sometimes resorted to similar rhetoric (Tymoczko 2011; Callender, Quinn, and Tymoczko 2008), though usually in a 
more theoretical context.

4  The sole twelve-tone exceptions are the singleton and the eleven-note set, which is simultaneously a stack of semitones 
and a stack of perfect fifths. In general, the (n – 1)-note subset of a completely even n-note chord will be generated by all the 
n-note chord’s generators. For example, Quinn (2006) notes that the ten-tone equal-tempered tetrachord 024610 is simul
taneously a stack of two- and four-step intervals (024610 and 260410). Similarly, the seven-tone equal-tempered hexachord 
0123457 is simultaneously a stack of seconds, thirds, and fourths.

2  As Milton Babbitt (1960) emphasized, standard twelve-tone operations combine distance-preserving operations in pitch 
(transposition and inversion) with distance-preserving operations in time (retrograde, which preserves distance between 
order numbers). This perspective is almost explicit in the visual analogies of Schoenberg (1941) 1975.
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3Dmitri Tymoczko    Approximate Set Theory

explicitly describe the voicings that bring out different aspects of a collection’s 
structure. For example, if we want to highlight a pentachord’s quartal aspect, then 
we should voice it in open position, with each note two chordal steps above its 
lower neighbor; if we want to highlight its tertian aspect, then we should use the 
(2, 1, 1, 2) voicing (described shortly). The theory of voicing thus provides a 
powerful tool for understanding the alchemical process by which abstract pitch-
class sets are transmuted into concrete musical objects. Indeed, voicings can be 
viewed as constitutive of our approximate categories: what makes a set “quartal” 
is that it is nearly evenly spaced when in the appropriate voicing.

For small chords it is possible to identify clustered, tertian, or quartal structure 
at a glance. As we add notes, the proliferation of possibilities makes things harder: 
given a random pentachord or hexachord, it can take effort to figure out whether it 
can be shaped into a chain of thirds or fourths. This article therefore develops heu­
ristics for determining a chord’s generic affiliations. For example, quartal chords of 
every cardinality distribute their notes into two approximately equal clusters approxi­
mately a tritone apart. Likewise, tertian pentachords tend to have four notes spaced as 
a cluster, with the fifth about a third away from its neighbors. These heuristics obviate 
the need for extensive memorization or complex music-theoretical computations.

Approximate set theory begins in the commitment to a loosened concep­
tion of musical identity. This loosening helps us understand the music of com­
posers who navigated the chromatic universe using tonal tools—for instance, 
diatonic genera such as step, third, and fourth. Figures such as George Perle, 
Pierre Boulez, Milton Babbitt, and Allen Forte rebelled against this approach, 
developing the more rigorous and purely chromatic discipline that came to be 
known as posttonal theory. Approximate set theory argues that something was 
lost in the process: we can translate the earlier discourse into purely chromatic 
language, reconceiving seconds, thirds, and fourths as small, medium, and large 
chromatic intervals. The resulting categories are doubly advantageous. Analyti­
cally, they reflect the practice of a wide range of musicians; compositionally, they 
provide tools for grappling with the otherwise overwhelming abundance of chro­
matic possibilities.

Approximate set theory also offers new techniques for recapturing tradi­
tional set theory’s lost precision. The most important of these involves a new 
form of exact set theory that measures intervals along the intrinsic scale formed 
by the notes of a set itself. This gives a precise theoretical language for describing 
voicing, or the distribution of pitches in register, which in turn allows analysts to 
understand how composers highlight various intervallic features of their mate­
rial. These pitch relationships, I argue, are often as interesting as the disembodied 
pitch-class relationships central to posttonal theory. This focus on pitch structure 
goes hand in hand with a loosened conception of musical identity, being insensi­
tive to small perturbations in set-class structure.

My thinking here has been influenced by two friends and colleagues. The 
first is Rudresh Mahanthappa, a deep musical thinker and one of the world’s great 
improvisers. For the past several years he and I have co-taught a course, titled  
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4 J O U R N A L  o f  M U S I C  T H E O R Y

“Composition and Improvisation,” in which we consider sets from tonal, atonal, 
compositional, and improvisational perspectives. Some of the ideas in this article 
come directly from Mahanthappa (e.g., Figure 8.2), while others are more indi­
rectly influenced by our collaboration. Above all, he showed me that set theory is 
not just a pen-and-paper discipline associated with a particular atonal aesthetic, 
but a living tradition encompassing a wide range of music both composed and 
improvised, tonal and nontonal.

Equally important is the work of Ian Quinn. Almost all the topics in this 
article were the subject of intense discussion when we were collaborating with 
Clifton Callender on voice-leading geometry. I confess that I was initially puzzled 
by Quinn’s ideas, understanding them in a Platonic spirit I could not share. Over 
the past few years, however, I have been surprised to find myself retracing paths 
Quinn had already walked along. The result is in many ways an alternative reali­
zation of the vision laid out in his “General Equal-Tempered Harmony”—a kind 
of music-theoretical remix, recombining Quinnian ideas about interval cycle, 
fuzzy resemblance, and set-class categorization (Quinn 2001, 2006, 2007). Like 
Quinn, I want to augment the isolated points of classical set theory with regions 
in a continuous quality space; like Quinn, I consider interval cycles to be proto­
typical collections supporting flexible categories of the sort that antedated set 
theory. Quinn’s work is more abstract and a priori than mine, aspiring to provide 
a broad framework applicable to every chord-and-scale environment; by con­
trast, I am more interested in specific compositional affordances native to the 
twelve-tone universe. The result might be considered a pedagogical, keyboard-
harmony response to ideas that Quinn treats more speculatively—the product of 
my experience teaching set theory to improvisers.

1. Voicing

A concrete voicing is an ordering of pitch classes in register, such as (C3, G3, E4). 
If we limit our attention to voicings with less than an octave between adjacent 
notes and decide not to care about the octave in which the voicing appears, then 
we can identify concrete voicings by listing their pitch classes in ascending order. 
A list like C–G–E then determines the open-position voicing (C3, G3, E4) up 
to octave transposition. This bit of shorthand suggests that voicings are closely 
analogous to twelve-tone rows: both are orderings of an aggregate, with voicings 
ordering a chord in register and twelve-tone rows ordering the chromatic scale in 
time. (The appendix explains this connection in detail.) Composers have some­
times expressed twelve-tone rows as voicings, but the more common strategy is 
to use voicing to add intuitive structure distinct from, but formally analogous to, 
that of the underlying row.5

5  For registrally ordered twelve-tone rows, see Stucky 1981; Perle 1985: 9–10; Mead 1994: 154, 249; Klein 1999; and Capuzzo 
2007. The analogy between twelve-tone rows and voicings is implicit in the work of Kholopov, discussed by Segall 2018.
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5Dmitri Tymoczko    Approximate Set Theory

I use the term concrete voicing to describe specific arrangements of pitches, 
whereas I use the more general term voicing to refer to patterns of intervals 
between adjacent notes in a chord. Here we have a variety of options depend­
ing whether we measure exactly or approximately and depending on whether we 
measure along the chromatic scale, the diatonic scale, or some other collection. 
This article uses three different systems. The first uses approximate intervals 
measured along the chromatic scale; in this system, “quartal” voicings are those 
in which each note is about five semitones above its lower neighbor. The sec­
ond uses exact intervals measured along scales such as the diatonic or harmonic 
minor; here “quartal” voicings are those in which each note is three scale steps 
above its lower neighbor. The third system uses exact intervals measured along 
what I call the intrinsic scale, the octave-repeating scale formed from a chord’s own 
notes.6 Though unfamiliar, this last approach formalizes an important aspect of 
informal musical discourse: a close-position voicing is one in which every note 
is one intrinsic step above its lower neighbor; an open-position voicing is one in 
which every note is two intrinsic steps above its lower neighbor; and the guitar­
ist’s drop-2 voicing is the pattern of intrinsic steps (2, 1, 2) produced by displac­
ing (or “dropping”) a close-position tetrachord’s second-highest note down by an 
octave (Figure 1.1).7 Since each pattern can start on any note, an n-note chord has 
n different registral inversions of each of its voicings, each with a different chordal 
element in the bass.8

This article explores the convergence of these approaches. For example, 
a quartal pentachordal voicing, which is to say, a voicing in which each note is 
approximately five chromatic semitones above its lower neighbor, will be in 
open position, which is to say that each note will be exactly two intrinsic steps 
above its lower neighbor. Furthermore, quartal pentachords can typically be 

6  The intrinsic scale is a central topic in my recent work (Tymoczko 2020b and 2023).

7  That is, the drop-2 voicing G3 C4 E4 B4 can be conceived as G b C E g B, skipping steps between G and C and between E and 
B; this is the pattern (2, 1, 2). These voicings, by virtue of being nearly quartal, are easy to play on the guitar (Tymoczko 2023). 
Though common in the pedagogical literature, this approach to inversion is not widespread among academic theorists;  
Vincent Persichetti (1961: 101, ex. 4–24), for example, constructs inversions by placing a chord’s bass note in the soprano.

8  My ideas here intersect with two very different music-theoretical traditions. One is practical and focused on improvisa
tion (e.g., Levine 1989; Laukens 1995; Bicket 2001; Herrlein 2011); it tends to describe intrinsic spacing using generative lan
guage (e.g., “take a close-position tetrachord and ‘drop’ the second-highest note by octave”). The other is smaller and more 
academic, exploring the relation between pitch and pitch-class sets (e.g., Bernard 1987; Morris 1995). Intermediate between 
these traditions are Cowell (1930) 1996; Persichetti 1961; Ulehla 1966; and Harrison 2014, 2016.

Figure 1.1.  Close-position, open-position, “drop-2,” and “drop-3” voicings  
expressed as patterns of steps along the intrinsic scale.
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6 J O U R N A L  o f  M U S I C  T H E O R Y

embedded in familiar scales as 012457 sets, measuring in scale steps, as with 
the diatonic set CDE•GA. (I use subscripts to identify the size of the scale 
containing nonchromatic sets; 012457 means “the 01245 set in some contextu­
ally determined seven-note scale.”) Understanding this convergence is useful, 
first because it helps us recognize a chord’s quartal potential when it appears 
as in close position (i.e., as a 012457 set in some familiar seven-note scale), and 
second because it tells us how to arrange that chord to bring out its quartal 
qualities—that is, as the open position voicing ( 2–(5–(1–(4–(   0, labeled in diatonic 
scale degrees.

Here it is helpful to imagine a “generated pentachord”: a stack of five notes, 
each g semitones above its lower neighbor, with g being any interval whatso­
ever, including fractional values such as 3.5 (three and one-half semitones, seven 
quarter tones, or 350 cents). When the generating interval g is small, say, one 
or two semitones, then the chord is a cluster spanning less than an octave; its 
cyclic nature can be expressed by a close-position voicing in which each note is 
one intrinsic step above its lower neighbor. But now suppose that g is between 
three and four semitones; in this case the top note will be more than an octave 
above the first note but less than an octave above the second (Figure 1.2), and the 
chord’s cyclic nature will be expressed by the intrinsic voicing (2, 1, 1, 2). Unlike 
the cluster, the cyclic structure may not be obvious in close position, where it will 
have four notes close together, with an outlier at some distance from the others. 
Finally, when g is large, say, five semitones, then two notes will lie in the upper 
octave and the cyclic structure will be most obvious in open position, with each 
note two intrinsic steps above its lower neighbor. These voicings are all evenly 
spaced, with exactly the same distance separating each note from its registral 
neighbors (Morris 1987: 54).

Already we have encountered a situation where exact chromatic thinking 
can be detrimental, for in twelve-tone equal temperament there are no tertian 
five-note interval cycles; this is because repeated major or minor thirds produce 
note duplications, as in D3–F3–A♭3–B3–(D4) or C3–E3–G♯3–(C4)–(E4). As 
a result, the systematic relation between voicing and interval cycle can escape our 
notice. Things become clearer when we consider either fractional distances like 

0 0

open circles are lower-octave notes

g 

g 

g 

Figure 1.2.  Generated pentachords when the generating interval g is 2, 3.5, and 5. The first 
produces a close-position voicing, the second produces the voicing (2, 1, 1, 2), and the third 
produces the open-position voicing.
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7Dmitri Tymoczko    Approximate Set Theory

3.5, or approximate intervals like “third” or “fourth.”9 A chord like C–E–G–B–D 
can thus be conceived as an equal-tempered approximation to a musical possibil­
ity native to other scale systems; approximate interval categories give us access to 
this possibility without requiring that we leave twelve-tone equal temperament.10

For every chord size there are cyclic voicings that highlight particular 
intervallic qualities. These are the patterns of intrinsic steps produced by exact 
interval cycles. Figure 1.3 lists the cyclic voicings for chords with three through 
seven notes, labeling the clustered, tertian, and quartal voicings. (Beyond that, 
we have quintal, sextal, and septimal voicings, which, as the appendix explains, 
can be derived from the quartal, tertian, and clustered voicings.) Even if a chord 
is not exactly quartal, the quartal voicing will make it as fourthy as possible; for 
some chords, this will be exactly quartal, for some it will be nearly quartal, and for 
others it will not be particularly quartal—but then there will be no better alter­
native.11 For example, Figure 1.3 tells us that the tetrachordal tertian voicing is (1, 
1, 1) while the quartal voicing is (2, 1, 2). Putting the French sixth into the for­
mer position gives B–D♯–F–A, which is a stack of thirds with a single diminished 
third (a “near third”); putting it into the latter position gives F–B–E♭–A, which 
is a stack of augmented fourths with a four-semitone diminished fourth (a “near 
fourth”). Though the French sixth is not exactly tertian or quartal, these voicings 
reveal that it is reasonably close to being both.

This sort of knowledge is straightforwardly useful to composers and improvis­
ers: given a collection, it shows us how to highlight various aspects of its intervallic 
structure. It also gives analysts a tool for examining how composers make use of the 
opportunities available to them. Figure 1.4 shows that both Bill Evans’s “So What” 
chord and Arnold Schoenberg’s “Farben” chord are open-position pentachords, 
dividing two octaves into five parts: Evans’s chord is almost a stack of perfect fourths, 
with just one major third; Schoenberg’s chord is not obviously quartal, containing 

9  On average, such chords will have a distance between adjacent notes that is between 3 and 4.

10  Yust 2015 considers equal-tempered music as the manifestation of continuous structures existing outside of equal tem
perament; this perspective is also common in work on tuning and intonation (e.g., Sethares 1999).

11  See the appendix for more discussion, as well as a catalog of voicings.

3 4 5 6 7

g < 2

11 CTQ
111 CT

1111 C
1111 C

1111 C

2 < g < 2.4 21112

2.4 < g < 3 21112 22122

3 < g < 4 2112 T 22122 T 222222 T

4 < g < 6 212 Q 2222 Q 23232 Q 333333 Q

Figure 1.3.  Cyclic voicings for chords of size 3–7, with generating intervals.  
C, T, and Q stand for the clustered, tertian, and quartal voicings.
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8 J O U R N A L  o f  M U S I C  T H E O R Y

a minor sixth (a triply augmented fourth) and a minor third (a doubly diminished 
fourth). But it does contain the quartal segment B–E–A, and on average its intervals 
are close to quartal; given the notes G♯–A–B–C–E, this is about the best one can do. 
Were the G♯ lowered by two semitones, the chord would be recognizably quartal.

We can turn one open pentachordal voicing into another by moving 
the top note down by two octaves; this is because, for any pentachord, taking 
five two-step motions along the intrinsic scale is equivalent to moving by two 
octaves. Moving the chord’s top note down by two octaves is thus equivalent to 
moving the entire configuration down by two intrinsic steps. In the case of the 
“So What” chord, this yields a stack of four perfect fourths, A2–D3–G3–C4–F4. 
In the case of the “Farben” chord it produces A2–C3–G♯3–B3–E4, which is again 
not particularly fourthy. But moving the E down by an octave gives us a stack of 
thirds A2–C3–E3–G♯3–B3, with intrinsic spacing (2, 1, 1, 2). Here we learn that 
the “Farben” chord is a late-Romantic ninth chord revoiced in a characteristically 
quartal way. This revoicing is not entirely smooth, and the result is not exactly 
quartal—the voicing is like a suit that, while not fitting perfectly, is passable at a 
distance. In much the same way, one could voice the “So What” chord using the 
tertian pattern (2, 1, 1, 2), yielding F3–A3–C4–D4–G4.12 This is the “Farben” 
chord’s converse, a quartal collection wearing thirdy clothes.

There is an important difference between the “So What” chord and the 
stack of thirds A2–C3–E3–G♯3–B3. The “So What” chord is a stack of two-step 
intrinsic intervals, each of which is very close to a perfect fourth: chromatically, 
it divides two octaves nearly equally; intrinsically, it divides two octaves exactly 
evenly. This means that its open-position voicings are all quartal or nearly so. By 

12  Readers can use the website https://www.madmusicalscience.com/voicing.html to calculate and explore chord voicings.

Figure 1.4.  The “So What” and “Farben” chords as open-
position pentachords. Above, the voicing’s intervals are 
measured in chromatic semitones (CHR), scale steps 
(diatonic and melodic minor; DIA), and intrinsic steps 
(INTR).
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9Dmitri Tymoczko    Approximate Set Theory

contrast, the chord A2–C3–E3–G♯3–B3 combines one- and two-step intrinsic 
intervals and does not divide any number of octaves nearly evenly. This means 
that its various (2, 1, 1, 2) voicings are not equally tertian; for example, if we start 
the (2, 1, 1, 2) pattern on E rather than A, we get E3–A3–B3–C4–G♯4, which is 
not at all tertian. In this respect the “Farben” chord is typical: as a rule, there will 
be one specific registral inversion in which a chord’s cyclic quality is clearest. The 
“So What” chord is special insofar as it is both a maximally even chord (dividing 
the octave into five parts, as evenly as possible in the twelve-tone universe) and 
voiced in a completely even way, with each note the same number of intrinsic 
steps above its lower neighbor. This produces the unusual situation in which the 
open-position voicings are all nearly quartal.

There is also a general difference between trichords and pentachords, on the 
one hand, and tetrachords and hexachords on the other. Since 3 and 5 are prime 
numbers, every nonzero intrinsic interval generates a complete cycle, touching on 
every note in the collection. For even-cardinality chords there is no open-position 
cyclic voicing, as a series of two-step intervals sounds only half the chord’s notes.13 
Instead the cyclic voicings include adjusted intrinsic interval cycles that avoid repe­
tition by perturbing the generating intrinsic interval. For example, the quartal voic­
ing E–A–D–G can be viewed as an almost open-position voicing whose middle 
interval is one step too small: quartal tetrachords like E g A D e G use the voicing 
(2, 1, 2) rather than (2, 2, 2). In much the same way, the tertian hexachordal voic­
ing is an almost-open voicing whose middle interval is one step too small: eleventh 
chords like D e F g A C d E f G use (2, 2, 1, 2, 2) rather than (2, 2, 2, 2, 2).

Though voicing has harmonic connotations, the concept can be useful in 
the melodic domain as well. Figure 1.5 shows that Eddie Harris’s “Freedom Jazz 
Dance” begins by arpeggiating the open voicing of the pentatonic scale, very much 
like Evans’s “So What” chord. Since a unidirectional arpeggiation would be musi­
cally awkward, spanning two octaves and not sounding melodic, Harris adds a pair 
of octave displacements to bring the entire figure within an octave; this produces a 
close-position voicing in register even while the melodic intervals arpeggiate two-

Figure 1.5.  Eddie Harris’s “Freedom Jazz Dance” opens with an octave- 
displaced open-position pentatonic voicing; the rest of the phrase hints  
at two other open-position pentatonic voicings.

13  Again, I use open position to refer to a voicing whose intervals are all two intrinsic steps: (2, 2, . . . , 2).
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10 J O U R N A L  o f  M U S I C  T H E O R Y

step intrinsic intervals. A similar point could be made about the many functionally 
tonal melodies that outline octave-displaced tertian voicings of the diatonic scale 
(Figure 1.6). In these passages voicing becomes a melodic phenomenon.

Octave displacements sometimes appear harmonically as well. Figure 1.7A 
shows a rootless G7 voicing that displaces the top note of a fourth-stack down by an 
octave; the result is an approximate fourth stack in which one chordal slot is occupied 
by a stepwise pair, a “blurred” or “smeared” note. I find the quartal quality audible 
despite the smearing. Figure 1.7B applies a similar distortion to a quintal hexachordal 
voicing, spaced (3, 4, 3, 4, 3) and spanning almost three octaves. Moving the bottom 
three voices up by two octaves produces the “smeared” quintal voicing (4, 3, 1, 3, 
4); it is common in jazz and can be heard in Steve Reich’s Nagoya Marimbas (mm. 
57–64; see also Levine 1989: 141). Once again I find the quintic quality perceptible 
despite the smearing. As a general rule we can take any stack of large intervals (i.e., 
fourths or larger) and transpose part of it to produce a “smeared” interval stack.

Another important type of voicing is the “gapped stack,” a collection of 
pitches that could be made cyclic with the addition of a single note. In many 
cases these voicings have the quality of the larger stack; for example, the chord 
A3–C4–G4–B4 sounds tertian even though it is intrinsically a cluster (GABC). 
Here we have an interesting conflict between two different aspects of musi­
cal structure: the abstract intervals relating the pitch classes (“cluster”) and its 

Figure 1.7.  Using octave displacements to create 
“smeared” quartal and quintic voicings. A. A rootless 
G7 voicing. B. A quintal hexachordal voicing.

Figure 1.6.  The first theme of Mozart’s Symphony no. 40, I, K. 550, opens  
with an octave-displaced tertian voicing of the G melodic minor scale.
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11Dmitri Tymoczko    Approximate Set Theory

arrangement in pitch (“ninth chord”). Atonal set theory tends to focus on the 
former, whereas tonal theory often emphasizes the latter.14 One of the goals of 
this article is to bridge these perspectives—considering voicing in atonal music, 
and abstract pitch-content in tonal contexts.

Finally, as I have argued before, the intrinsic scale provides a natural gen­
eralization of neo-Riemannian transformations (Tymoczko 2020b). A gener­
alized neo-Riemannian voice leading is nothing more and nothing less than a 
progression between two inversionally related chords voiced similarly—that is, 
chords related by pitch-class inversion but spaced in the same pattern of intrin­
sic steps. Simple mathematics shows that these progressions invariably preserve 
the distance between at least two voices. The resulting voice leadings link chords 
that are doubly similar, sharing the same abstract pitch-class intervals (because 
they are related by pitch-class inversion) and the same intrinsic pitch intervals 
(because they are voiced similarly). Such voice leadings will arise whenever com­
posers try to find similar-sounding voicings of inversionally related collections.

Figure 1.8 uses these ideas to analyze the opening of Schoenberg’s violin 
concerto. Each hexachord uses the same voicing, a distorted fourth stack in which 
the top two notes are lowered by an octave. The music resembles Figure 1.7, but 
instead of a simultaneous smearing, the stepwise pairs become small melodic 
cells. I find the somewhat fourthy quality of the passage to be both audible 
and characteristically Schoenbergian.15 Since the two hexachords use the same 

Figure 1.8.  Schoenberg’s Violin Concerto op. 36 opens with a pair of inversionally related 
hexachords voiced in the same way. This generalized neo-Riemannian voice leading preserves 
the relative arrangement of the chromatic cluster (open note heads, left two measures). Each 
hexachord is voiced as an octave-displaced quartal or nearly quartal voicing. J5 is the neo-
Riemannian voice leading preserving the chromatic cluster (shown with open note heads).

14  See Persichetti 1961: 78–79 for the suggestion that one omit the ninth chord’s fifth. The implication is that tertian structure 
is not destroyed by this omission.

15  Cowell (1930) 1996: 113 describes Schoenberg’s fondness for quartal chords.
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12 J O U R N A L  o f  M U S I C  T H E O R Y

voicing, they are related by a generalized neo-Riemannian transformation, in this 
case preserving the spacing of the chromatic cluster. I doubt that Schoenberg 
was counting hexachordal steps or thinking about the intrinsic scale; instead, I 
imagine he tried to space his two hexachords similarly, in a way that satisfied his 
quartal aesthetic. What is interesting is that this sort of intuitive reasoning leads 
to the precise relationships we have been exploring.

2. Categories

This section models the approximate nature of music perception by grouping chro­
matic set-classes into larger categories. This is among the most challenging projects 
a theorist can take on, as it is both intuitively meaningful and yet vague enough to 
resist easy formalization. Our job is to devise an approach that honors intuition 
while also adding some useful degree of specificity—yet not too much specificity, 
as we might want to make room for the thought that some collections could be 
“sort of ” tertian, “somewhere between tertian and quartal,” and so forth. Approxi­
mate categories are flexible heuristics, useful in some situations but not others.

I will focus on three main categorization schemes: one based on grouping 
chromatic intervals, one based on scale membership, and one based on quantiz­
ing to the nearest seven-tone equal-tempered (“equiheptatonic”) set-class. Since 
I need to refer to these methods repeatedly, I will nickname them the chunking, 
scalar, and quantization approaches. I will also show that voicing provides a 
fourth route to approximate set theory, clarifying the musical significance of the 
others; the appendix discusses a fifth strategy based on the Fourier transform.

My main result is that in lower cardinalities these strategies converge, in 
each case making approximate twelve-tone set theory look very much like exact  
seven-tone set theory. Though this might initially seem counterintuitive, it makes 
sense on reflection: as I discuss below, the seven-note universe is about half the size  
of the twelve-note universe, and coarse-grained views of chromatic space are going 
to look similar insofar as they satisfy a few intuitive constraints (e.g., that they  
have roughly half as many intervals as the chromatic scale, or that chord-categories 
represent connected regions in voice-leading space). Here we encounter a theme 
central to Ian Quinn’s work: the approximate equivalence of different methods of 
categorization.

First method: Chunking

The simplest strategy is to group chromatic intervals into classes: instead of con­
ceiving A–C–E–G♯ as a stack of major and minor thirds, we take it to be composed 
of intervals belonging to a larger class, the third. Here the approximate interval is 
a kind of musical genus containing two separate species: three semitones and four 
semitones.16 There are eleven chromatic intervals between unison and octave. If 

16  This approach has been explored in an insightful article by Andrew Mead (1997–98).
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13Dmitri Tymoczko    Approximate Set Theory

we want to group them into roughly half as many categories, we have a choice 
between five categories, with one larger than the rest, or six categories, with 
some overlap. The question is whether to adopt the intervals of the six-note, five- 
interval whole-tone scale or the seven-note, six-interval equiheptatonic scale. This 
in turn determines whether fourths and fifths are equivalent, like minor and major 
thirds, or octave complements, like thirds and sixths.

The latter strategy is more familiar: one- and two-semitone intervals are 
“seconds,” with sevenths their complements; three- and four-semitone intervals 
are “thirds,” with sixths their complements; and five- and six-semitone intervals 
are “fourths,” with fifths their complements. Fourths and fifths share the tritone, 
which can play different roles depending on context. For instance, we classify 
C–F–B–E as quartal, composed of five- and six-semitone intervals, while we 
classify E–B–F–C as quintic, composed of six- and seven-semitone intervals. 
Fourths and fifths together span two semitones (5–6, 6–7), whereas other adja­
cent categories, such as second and third, span three (1–2, 3–4). The six-note, 
five-interval strategy instead groups fourths and fifths into a single category, 
considering five-, six-, and seven-semitone intervals to be “near tritones.” From 
this standpoint, the chord C3–G3–C♯4–F♯4 is a stack of near tritones, with each 
interval bisecting the octave into two nearly equal halves.

In this article I use the seven-note, six-interval strategy because it is more 
familiar, more precise, and more analytically fruitful.17 Furthermore, its interval 
categories are similar not just in their absolute size (as measured in semitones or 
cents) but also in their acoustic quality (Cowell [1930] 1996). Figure 2.1 sum­
marizes the relationship. Thirds are sixths are imperfect consonances, having a 
distinctive phenomenological quality I experience as softness: discounting fac­
tors of two, their just-intonation equivalents use the ratios 5/1 and 5/3. Seconds 
and sevenths are dissonant by virtue of their proximity to the unison and octave.18 
The fourth and fifth are anchored by perfect consonances with the very simple 
ratio 3/1 and having the phenomenological character of emptiness or hardness; 
they are joined by the categorially anomalous tritone, which has the most com­
plex frequency ratio of any interval in the just-intonation chromatic scale. This 
(diabolical) exception notwithstanding, there is substantial overlap between 
a classification based on approximate semitonal size and one based on conso­
nance. These acoustic facts add an extra dimension of meaning to categories that 
can be justified on entirely separate grounds.19

17  Of course, the seven-note, six-interval system is familiar because it recalls the intervals of the diatonic scale, though here 
it arises for purely chromatic reasons. In principle, this system is no more diatonic than the six-note, five-interval system is 
whole tone.

18  They also involve more complicated ratios, but this is possibly irrelevant: we can find arbitrarily complicated ratios that 
are infinitesimally close to the perfect fifth and hence sound consonant.

19  It is possible to extend the approximate approach to other interval systems. One interesting choice is the pentatonic 
scale’s four-interval system, which divides the chromatic octave into steps of one, two, or three semitones, leaps of four, five, 
and six semitones, and their complements. This more coarse-grained system cuts across the acoustic distinctions in Figure 
2.1, placing the imperfect consonances in different categories.
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14 J O U R N A L  o f  M U S I C  T H E O R Y

When categorizing chords in this way, we have a technical choice between 
stack equivalence and complete generic equivalence. Two n-note chords are stack 
equivalent if they can be arranged to form the same sequence of n – 1 generic 
intervals. From this point of view, B–D–F–A♭, C–E–G–B, and C–E–G♯–B are 
all tertian, as each can be expressed as a stack of three thirds.20 However, not all 
their intervals are generically equivalent: B–A♭ is a sixth while C–B is a seventh, 
and C–G is a fifth while C–G♯ is a sixth. The more stringent criterion of com­
plete generic equivalence requires approximate equality of all intervals.21 I prefer 
the relaxed notion, as it is more useful for tracking the voicings that are my pri­
mary analytical concern; it also produces more manageable groupings that, in 
my experience, are more analytically fruitful. This is because musicians often do 
consider B–D–F–A♭, C–E–G–B, and C–E–G♯–B to be tertian, just as they con­
sider B–C–D♭ and C–D–E to be clusters.

Second method: Scalar embedding

The second approach is to think of a chord such as A–C–E–G♯ as an exact 
sequence of intervals inside some seven-note scale such as D acoustic (A melodic 
minor ascending). In that collection each interval is exactly two scale steps large; 
it is just that the scale steps themselves are somewhat uneven: A b C d E f♯ G♯. The 
challenge is to find a group of scales that is large enough to contain a wide range 
of chromatic sets while also being similar enough to agree about their structure.

One such collection comprises the seven “Pressing scales,” the largest 
possible equal-tempered sets without chromatic clusters. Four of these are the 
most even seven-note scales: diatonic, acoustic (melodic minor ascending), har­
monic minor, and harmonic major (harmonic minor with raised third). One is 
the octatonic, the maximally even eight-note scale. The last two are hexachords: 
the completely even whole-tone scale and the less even but heavily triadic “hex­
atonic” scale formed from alternating semitones and augmented seconds. In 
my earlier work I explored these collections as harmonic objects in their own 
right (Tymoczko 2004, 2011); here I use them as “grids” for conceptualizing the 

Figure 2.1.  Approximate interval categories and consonance.

20  I do not count the “wraparound” interval from the top of the stack to the octave transposition of the bottom.

21  Mead 1997–98: 87 uses complete generic equivalence.
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15Dmitri Tymoczko    Approximate Set Theory

chromatic world. Thus, for example, we can define tetrachordal “clusters” as all 
those four-note chromatic sets that appear consecutively in one of these scales, 
including 0134 (which appears in the acoustic, octatonic, and harmonic scales), 
0145 (harmonic and hexatonic), 0136 (harmonic), 0346 (harmonic), 0235 (dia­
tonic, acoustic, harmonic, octatonic), and 0246 (diatonic and whole-tone). In 
this way the scalar set-class 0123 serves as a genus containing a variety of chro­
matic species (0134, 0145, 0346, 0235, and 0246).22 This provides a notion of 
cluster that is both intuitive and expansive.

The main technical challenge here is multivalence. The pitch classes G, B♭, 
and D appear as a stack of scalar thirds in three diatonic scales (F, B♭, and E♭), two 
acoustic scales (C and B♭), two harmonic minor scales (D and G), and two har­
monic major scales (D and E♭). But they also appear as a stack of scalar fourths in 
B harmonic minor.23 Should we consider G minor to be both a triad (0247) and 
a stack of fourths (0147), or should we consider it a triad only? The first answer 
leads to messy categories with a substantial degree of overlap, while the second 
leads to cleaner categories at the cost of oversimplification. In this article I assign 
a chromatic species to its most popular scalar genus, unless it appears as two 
different scalar set-classes with approximately equal frequency.24 Thus I assign 
037 to scalar set-class 0247 (since the triadic embedding outnumbers the fourth-
chord embedding 9 to 1), but 014 to both scalar set-classes 0137 and 0127.

25 This 
is because there is general agreement about the status of the minor triad, whereas 
there is no such agreement about the status of the chromatic 014 trichord. I also 
prioritize the seven-note scales, considering octatonic, whole-tone, and hexa­
tonic membership only when no seven-note embedding is available.

Though chunking and scalar embedding seem quite different, they are 
in fact closely related. In the first we measure chromatically but group intervals 
together, chunking or binning them into larger categories based on approximate 
size. In the second we let scales do the binning for us, measuring intervals along 
larger collections containing our chord. The two approaches converge because 
the seven-note Pressing scales typically put a single scale degree in each “slot” 
defined by our approximate chromatic interval categories. The first approach will 
be more familiar to atonal musicians accustomed to thinking chromatically, while 
the second will be more familiar to tonal musicians accustomed to a hierarchy of 

24  Approximately equal means “within one.” Suppose a chord appears as set-class X in n different scales (with n the maximum, 
considering all the different embeddings into all possible Pressing scales) and as set-class Y in m different scales (with m the 
second-largest number of embeddings). I count the chord as both X and Y if m is equal to either n or n – 1; otherwise, I count 
it only as X.

25  The notes C–C♯–E appear as 0137 in three scales (F♯ acoustic, A♭ harmonic major, and C♯ harmonic minor, all of which place a 
note between C♯ and E) and as 0127 in two (F harmonic major and F harmonic minor, where there is no note between C♯ and E).

22  Matthew Santa (1999, 2000), Christoph Neidhöfer (2005), and I (Tymoczko 2011: §4.8–10) have all used scalar set-classes 
to compare sets in different scales, but typically in contexts where the scales are clearly present on the musical surface; in this 
section, I use scalar set-classes to categorize chromatic objects even when the scales do not appear. This allows us to consider 
chromatic set-classes 0134, 0246, and 0235 all to be clusters, even in completely chromatic environments.

23  And D hexatonic, but I ignore that since it is challenging to compare set-classes across cardinalities.
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16 J O U R N A L  o f  M U S I C  T H E O R Y

collections, chord-within-scale-within-aggregate. Their in-practice similarity is a 
boon for musicians who want to move between worlds.

Both systems provide categories with sharp boundaries, being discrete 
rather than continuous. In music, however, it is often useful to have some flexibil­
ity; for example, the tetrachord 0125 is not a stack of one- or two-semitone inter­
vals, nor is there any Pressing scale containing these four notes, yet the chord 
seems more cluster-like than tertian. Even if we do not want to consider it an 
unqualified cluster, we might want some way of expressing the thought that it is 
almost a cluster, much as we might want to say that the French sixth is both nearly 
tertian and nearly quartal. My next approach provides flexible or “fuzzy” catego­
ries allowing us to express these thoughts.

Third method: Quantization

Here we categorize chords by proximity to equiheptatonic set-classes—the 
voice-leading distance, measured in continuous space, to the nearest proper sub­
set of any scale dividing the octave into seven exactly even parts. I describe this as 
equiheptatonic quantization, a forbidding term that has the advantage of both con­
cision and precision.26 Conceptually, the approach extends the clustering tech­
nique to larger collections: clustering categorizes each step-interval separately, 
sending it to its nearest equiheptatonic analogue; equiheptatonic quantization 
instead sends whole chords to their nearest equiheptatonic analogues, using 
equiheptatonic set-classes as prototypes for categorizing twelve-tone equal-tem­
pered sets.27 The equiheptatonic collection is a tertium quid that connects the 
previous categorization systems: it contains the same interval categories as the 
chunking system (second, third, fourth, and their compounds) while also being 
very close to nearly even seven-note scales such as the diatonic, acoustic, and har­
monic. Indeed, the diatonic scale is as close to equiheptatonic as it is possible to 
get in twelve-tone equal temperament.

Equiheptatonic quantization presents a number of technical complica­
tions. The first is that calculating distances generally requires a computer.28 The 
second is the need to translate continuous distances-from-prototypes into binary 
judgment of categorial membership. The issue is that a chord can sometimes be 
slightly closer to one set-class than to another: the French sixth B–D♯–F–A is 
very close to the equiheptatonic fourth chord and just a bit farther away from the 
equiheptatonic tertian tetrachord. Should we assign it to one category or both 

26  Quantization is explored in Yust 2015 and Tymoczko 2013.

27  Contrast Quinn 2006, where generic prototypes always belong to the scalar universe containing the specific chords.

28  If we use the Euclidean metric, then there is a four-step algorithm for computing the voice-leading distance between 
set-classes X and Y: put both sets in close position, transpose both so that their pitches sum to the same value c, compute 
the Euclidean distance between the two ordered lists of pitches, and repeat the procedure for each mode of set Y, moving its 
bottom note to the top and transposing the resulting notes so they sum to c. Fractional pitch classes are sometimes required 
to achieve the correct transposition.
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17Dmitri Tymoczko    Approximate Set Theory

categories, or create a new category intermediate between the two? In this arti­
cle I choose a cutoff distance to determine category membership, with chords 
assigned to a category if they are at least that close to its prototype; thus, French 
sixth will be considered both tertian and quartal. I choose a second cutoff dis­
tance to define near membership; thus, I write 0141 to indicate that the chromatic 
014 trichord is close to being a cluster (category 1), even though it is not officially 
considered one.29 Finally, when quantizing to the equiheptatonic scale I generally 
ignore multisets, considering only prototypes without pitch-class duplication; 
this is because I find it counterintuitive to think of, say, the chromatic set-class 
01212 as a version of the equiheptatonic multiset 0017.

It is slightly surprising that the three methods converge as well as they do. 
The big picture is clear enough: equiheptatonic quantization tends to agree with 
scalar embedding because the seven-note Pressing scales tend to divide the octave 
nearly evenly, and equiheptatonic quantization agrees with chromatic chunking 
because equiheptatonic intervals lie within the boundaries of the chromatic cat­
egories. That is, the equiheptatonic step is 1.71, between the semitone and major 
second; the equiheptatonic third is 3.43, between the minor and major third, 
and the fourth is 5.14, which is just above the equal-tempered fourth. But the 
convergence is closer than might be expected from these numbers alone. After 
all, one can stack equal-tempered semitones to produce chromatic chords dis­
tant from the equiheptatonic cluster (e.g., 0123412). The surprise is that the other 
equal-tempered intervals do not lead to analogous divergences, in part because 
the equal-tempered fourth is very close to the equiheptatonic fourth and in part 
because note repetition limits the stacking of tritones, major thirds, and minor 
thirds. In other words, the convergence between the methods is the by-product 
of several unrelated mathematical factors.

Fourth method: Voicing

Voicing and the intrinsic scale provide yet another route to approximate set the­
ory, largely consistent with those considered above. Fundamentally, intrinsic 
steps provide a unit of distance that is agnostic as to chord structure: absolutely 
any tetrachord can be voiced (2, 1, 2), just as any pentachord can be voiced in 
open position. What results is a topological perspective in which interval content 
is of secondary importance (Tymoczko 2020b). These intrinsic categories are 
sometimes too broad, much as standard set theory’s categories are sometimes 
too narrow. Approximate set theory tries to find a middle ground by considering 
chords that are nearly evenly spaced when voiced cyclically; for instance, quartal 
tetrachords are nearly evenly spaced in the (2, 1, 2) voicing, and quartal penta­
chords are nearly evenly spaced in open position.

Mathematically, we reconceive the left-hand ranges in Figure 1.3 as averages 
rather than precise values. For example, the bottom row shows the cyclic voicings 

29  I use 1.1 semitones as the primary distance and 1.3 semitones as the secondary distance.
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for chords whose (exact) generator is greater than a major third and less than a 
tritone (4 < g < 6). In twelve-tone equal temperament the only possibility is the 
perfect fourth (g = 5). We can, however, obtain nearly evenly spaced chords using 
near fourths, that is, fourths and tritones with perhaps the occasional major third. 
This gives us not just the purely quartal C–F–B♭–E♭ but also such nearly quartal 
sonorities as C–F♯–B–E and C–F–B–E: all three belong to the same approximate 
category in each of the three systems we have just considered, and all three are 
nearly evenly spaced in the (2, 1, 2) voicing.30 In much the same way, tertian voic­
ings bring out the cyclic structure of chords whose generator lies between minor 
and major third (3 < g < 4). Here there are no exact equal-tempered options, but 
we can combine major and minor thirds to produce nearly even voicings whose 
average interval size lies between 3 and 4 (e.g., pentachords like C–E–G–B–D). 
The surprise is that the ranges in the left column of Figure 1.3, which are deter­
mined mathematically as explained in the appendix, correspond both to intuitive 
terms such as quartal (4 < g < 6), tertian (3 < g < 4), and clustered (g < 2) and to the 
categories produced by the chunking, scalar, and quantization approaches. This 
convergence is the mathematical basis of our investigation. Practically speaking, 
it ensures that chords in the same category can be voiced similarly, no matter 
which approximation we use.

In fact, we can identify the specific voicings that bring out different inter­
vallic qualia for chords in every approximate category. Figure 2.2 summarizes 
the situation. Each line corresponds to a chord size, with approximate chord 
categories, or genera, labeled in bold: clustered, tertian, quartal, and equipollent 
(discussed below). For each genus I list a number of voicings. The characteristic 
voicing, shown in bold, brings out the chord’s intrinsic quality, voicing a clustered 
pitch-class set as a stack of seconds, a tertian pitch-class set as a stack of thirds, 
and so on. The figure also includes both gapped and smeared voicings of various 
sorts. For tetrachords and larger chords, interval cycles of one type can be voiced 
as gapped stacks of another type; thus, a clustered tetrachord can be voiced as a 
gapped stack of thirds. For hexachords the different chord types merge so that 
one and the same collection is equally clustered, tertian, and quartal. Much of 
this article is devoted to explaining these relationships.

3. Approximate analysis

To give a feel for the virtues of approximate thinking, Figure 3.1 annotates the 
opening fourteen measures of Schoenberg’s op. 11/1. I interpret this music 
as largely concerned with approximate interval shapes. The opening six-note 
melody consists in a pair of “third-plus-step” gestures, harmonized in the 
left hand by gapped fourth and near-fourth stacks, most of which are third-
plus-step trichords. In the fourth measure the right-hand verticalizes and  

30  These chords not only have an average interval size of about 5 when in the (2, 1, 2) spacing but also a small variance; that 
is, each interval is close to the average.
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19Dmitri Tymoczko    Approximate Set Theory

truncates the opening third-step melody. It is juxtaposed against a gapped 
third stack whose melodic intervals contract as the melody ascends, a com­
mon Schoenbergian strategy; these form the pattern third-third-step-step, 
or fifth-third-third-step-step if one includes the bass. This accompanimen­
tal figure also horizontalizes and fills in an open-position gapped-quartal 
trichord (cf. the open note heads in m. 6 of the example). The third itera­
tion of the right-hand figure is harmonized in sevenths—a straightforward 
embellishment when we are thinking approximately, but not if we are looking 
for exact chromatic relationships.

When the melody reappears in mm. 9–10 it is subjected to the intricate but 
approximate algorithm shown in Figure 3.2: formerly we had a pair of third-steps 
joined by clusters (B–G♯–G and A–F–E, overlapping as clusters G♯–G–A and 
G–A–F); now we have third-step F♯–D–C followed by registrally inverted cluster 

Figure 2.2.  Some common voicings for fourteen genera: clustered, tertian, and quartal chords with 
three to six notes, along with equipollent trichords and tetrachords. Each line contains chords of a 
particular size. Above the staff I label chord categories and voicing types. The characteristic voicing 
is in bold and shown with open note heads; it creates a stack of approximately equal intervals. 
Additional voicings show how the chord can be represented as a gapped or smeared stack of some 
other category. Underneath each voicing is its pattern of spacing in intrinsic steps.
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20 J O U R N A L  o f  M U S I C  T H E O R Y

Figure 3.1.  Approximate analysis of the opening of Schoenberg’s op. 11/1.

Figure 3.2.  The two forms of the melody are produced by the same algorithm,  
interchanging the terms third-step trichord and cluster.
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21Dmitri Tymoczko    Approximate Set Theory

G♯–A–B♭, joined by registrally inverted third-steps (D–C–G♯ and C–G♯–A).31 
These subtle relationships are difficult to comprehend and even harder to hear. 
More palpable is the process of intervallic expansion from B–G♯–G through A–F–
E to E–C–B♭ and F♯–D–C: minor third plus minor second, then major third plus 
minor second, then major third plus major second, moving from smallest to largest 
and omitting only minor third–major second. The left hand in mm. 12–14 uses 
sixths and steps, inverting the opening third-step configuration; the right hand 
ascends from fourths to an incomplete third stack, once again contracting as it  
rises; the contraction continues abstractly to seconds expanded registrally as 
ninths.32 These ninths are echoed by sevenths and ninths in the right hand of m. 13.

Most of this is clear on the page and reasonably clear to the ear: if there is 
a perceptual challenge, it lies both in the speed of Schoenberg’s gear changes and 
in his penchant for superimposing unrelated structures (e.g., sixths-and-steps 
against sevenths-and-ninths in m. 13).33 It may be that Schoenberg went too far, 
but that would be a problem of execution rather than conception; I have little 
doubt that approximate organization is both intellectually coherent and percep­
tible in principle. Personally, I consider it sufficient in itself, not requiring supple­
mentation by more rigid structures such as chromatic sets or twelve-tone rows.

Evidence of approximate thinking can be found throughout twentieth- and 
twenty-first-century music. Figure 3.3 shows two passages from the end of Ruth 
Crawford Seeger’s nine Preludes for Piano, written in 1927–28 and published in 
1941, one opposing right-hand sevenths with left-hand seconds, their approxi­
mate complements, and the other setting right-hand sevenths and quintic chords 
against quartal and quintic chords in the left. Figure 3.4 contains the opening 
pitches of Stockhausen’s 1955 Klavierstücke III: all but two of the intervals are sev­
enths or ninths; the exceptions are gesture-initiating tritones. The approximate 
approach has also been discussed by numerous theorists: it features in Henry 
Cowell’s ([1930] 1996: 111–16) New Musical Resources, a book sometimes cred­
ited with introducing harmonic clusters, and plays a central role in Vincent Persi­
chetti’s (1961: chaps. 3, 4, 6) harmony textbook.34 There are at least three reasons 
why composers might favor approximate over exact organization. One is that it 
reflects a belief that music perception is approximate, with small intervallic vari­
ations not unsettling the listener’s perception of musical similarity. Another is a 
desire for compositional options, and in particular for chromatic analogues to the 

31  Haimo 1996 highlights the chromatic collections linking the melody’s third-step trichords.

32  Perle 1962 identifies some of these relationships.

33  The superimposition of unrelated structures links set theory to polytonality; both are examples of the twentieth-century 
theme of apartness.

34  Ludmila Ulehla’s (1966) Contemporary Harmony addresses clusters (224–29) and quartal and quintal harmony (chap. 17). 
Messiaen (1944) 1956: chap. 14 mentions quartal chords. More contemporary treatments include Sorce 1995: chap. 20 and 
Harrison 2016 (esp. 103–7, which distinguishes clusters from tertian harmonies, though it does not include a separate class of 
quartal harmonies). Many jazz sources discuss quartal harmony (e.g., Levine 1989: chap. 13).
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22 J O U R N A L  o f  M U S I C  T H E O R Y

subtle distortions produced by diatonic transposition. A third is a desire to cate­
gorize musical possibilities in a way that is responsive to their acoustic character.

What is fascinating is that approximate organization can be found even in 
twelve-tone music. Return to the opening of Schoenberg’s violin concerto, shown 
in Figure 1.8. Andrew Mead (1997–98) has observed that the dyads in the pas­
sage, while not exactly related, are approximately equal: in each hexachord the 

Figure 3.4.  A reduction of the opening of Stockhausen’s  
Klavierstücke III. Approximate intervals are labeled above the  
staff, using “tt” for tritone and 7 and 9 for sevenths and ninths.  
Italics represent minor sevenths and minor ninths; regular type,  
major sevenths and ninths.

Figure 3.3.  (top) Measure 4 of Ruth Crawford Seeger’s Prelude no. 9 balances  
sevenths in the right hand against seconds in the left, their approximate com
plements. (bottom) Measure 13 juxtaposes sevenths and quintic chords in the  
right hand against quartal and quintic chords in the left.
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23Dmitri Tymoczko    Approximate Set Theory

solo violin states a minor second, which is answered by thirds and sevenths in the 
ensemble; in the first hexachord we have major third and minor seventh, while in 
the second we have minor third and major seventh. As Mead notes, the ensem­
ble’s melodic intervals also move by fourths and steps (first minor second and per­
fect fourth, then major second and tritone).35 Approximate set theory thus reveals 
an additional layer of structure subsisting alongside the more rigid relationships 
of twelve-tone theory.36 The rigid relationships could perhaps be compared to a 
grammar, structure provided by the language itself and present in any piece writ­
ten in that language; approximate relations are more like semantics, statements a 
composer chooses to make within the constraints set by the grammar. Substantially 
more analytical effort has been directed toward the former than the latter, leaving 
us with a one-sided perspective on this multivalent music.37

At this point I should clarify that my interest in approximate interval size 
does not imply any disinterest in exact interval content. Two clusters, say, G4–
G♯4–A4 and G4–A4–B4, can sound very different despite being clusters, and the 
same is true for tertian or quartal sonorities, even when voiced similarly. Musical 
similarity is multidimensional, and exact intervallic content is one of its dimen­
sions. My argument, rather, is that approximate categories give us another dimen­
sion, particularly when reinforced by voicing: two clusters, such as C4–D4–E4 
and A♭3–B♭3–C♭4, can sound chromatically different and yet generically simi­
lar. They are very different clusters, like love and archaeopteryx are very differ­
ent nouns. I think the experience of hearing a pair of very different clusters is 
phenomenologically different from the experience of hearing totally unrelated 
chords (e.g., a consonant cluster and a dissonant stack of sixths). Approximate 
set theory captures one thread in the tapestry of relationships that jointly make 
up musical meaning.

That said, I do think there is an important philosophical question about 
the relative priority of exact and approximate. Allen Forte denied that terms such 
as chromatic lines, thirds, triads and chords in fourths could be usefully applied to 
Schoenberg’s music (Forte 1972). Figure 3.5 shows two of Forte’s analyses: in 
the first, he finds no fewer than eleven structurally significant tetrachords in a 
simple line of descending chromatic thirds; in the second he finds six structur­
ally significant hexachords in the opening of Schoenberg’s op. 11/1. Put aside 
questions about whether we can reliably segment notes in the appropriate way. 

35  The two accompanimental tetrachords 0457 and 0356 are completely generically equivalent; in section 5 I place them in 
the “equipollent” category.

36  David Lewin (1998: 25–26) reported that Roger Sessions reported that Arnold Schoenberg conceived of the perfect fifth as 
“slightly more than half an octave.” To me this suggests approximate categorization: the fourth is a half-octave or slightly less, 
the third is a quarter-octave or a little more, while the second is a sixth of an octave or less.

37  The comparison of twelve-tone rows to syntax echoes Edward T. Cone (1967), who likewise complains about analysts 
overemphasizing the syntactical at the expense of the expressive. Dubiel 1990 makes an analogous point about Babbitt. 
Haimo 1996 and Mead 1997–98 describe the role of approximate relationships in Schoenberg’s music. Callender, Quinn, 
and Tymoczko 2008 and Tymoczko 2020b note that voice-leading geometry can be used to categorize chords but do not go 
beyond specific examples; the present article attempts to put that proposal on more systematic footing.
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Instead, consider just how demanding these analyses are: it is easy for me to 
imagine improvising or composing with approximate relationships, and I feel 
reasonably confident in my ability to identify them by ear; hearing or produc­
ing exact Fortean structures is much more difficult—and it is unclear that any 
aesthetic benefit is associated with success. (From what I can tell, listeners are 
not particularly sensitive to exact set-theoretical relationships.) The approxi­
mate analysis feels easy and natural, placing Schoenberg’s music somewhere in 
the vicinity of free jazz; the exact alternative feels unrealistic and perverse, a kind 
of fantastical mathematics ungrounded in musical experience. Indeed, I would 
say something similar about the twelve-tone passage in Figure 1.8: to me, the 
approximate relationships feel like primary bearers of musical meaning, with the 
exact hexachordal relationship closer to being an intellectual conceit. The choice 
between exact and approximate has immense consequences for how we under­
stand this music.

That choice is liable to be obscured by a line of reasoning both tempting 
and invalid, analogous perhaps to Kant’s “transcendental illusions.” The resem­
blance between approximate twelve-tone and exact seven-tone set theories can 
tempt the unwary musician into rejecting approximate set theory as an anach­
ronistic residue of tonal thinking. In other words, we associate the terms second, 
third, and fourth with their exact diatonic meanings, not realizing that they can 
be given approximate chromatic meanings as well. Approximate set theory thus 

Figure 3.5.  Two exact analyses by Allen Forte. A. Measure 17 of Schoenberg’s Herzgewächse op. 17. 
B. The opening of Schoenberg’s op. 11/1, analyzed in Figure 3.1.

D
ow

nloaded from
 http://read.dukeupress.edu/journal-of-m

usic-theory/article-pdf/67/1/1/1973785/1tym
oczko.pdf?guestAccessKey=1f7c6515-12d0-4c5d-9759-2b0eb8eedee3 by guest on 18 June 2023



25Dmitri Tymoczko    Approximate Set Theory

comes to seem contaminated with tonal cooties, deserving scorn and derision. 
Hence we find Forte rejecting such manifestly useful terms as chromatic lines,  
triads, and chords in fourths.

We can even reimagine diatonic or scalar set theory as a kind of approxima­
tion. Having absorbed the theoretical presumption of exactitude, I have always 
conceived scalar set theory as a brand of exact set theory, measuring in scalar 
rather than chromatic steps. This can be useful to be sure. But we can also inter­
pret scalar set theory as dealing with the “hand shapes” of approximate set theory. 
It just so happens that, within the constraints of a seven-note scale, these hand 
shapes are typically realizable in only one way: given a starting note in some dia­
tonic scale, the only way to create an approximate (chromatic) fourth chord is to 
use an (exact) diatonic fourth chord. The issue here is more metaphysical than 
technical, a question of the relative weight of exact and approximate: traditional 
theory postulates that listeners keep an accurate tally of all the intervals they hear, 
whether diatonic or chromatic; the alternative is that they imperfectly perceive 
approximate shapes, which sometimes get translated into exact relationships. We 
can reimagine the exact relationships as shadows on the cave wall: perhaps it is 
the approximate that is essential, with exactitude a mere appearance.

4. Trichords

I begin by categorizing trichords using approximate interval size, binning together 
(or “chunking”) the six nonzero interval classes into three groups: small (sec­
onds, one or two semitones), medium (thirds, three or four semitones), and large 
(fourths, five or six semitones), as well as their complements (sevenths, sixths, 
and fifths). We define clusters as chords that can be arranged as stacks of small 
intervals, triads as chords that that can be arranged as stacks of medium inter­
vals, and quartal chords as stacks of large intervals. This produces four trichordal 
categories:

	 1.	 Clusters: 012, 013, 024;
	 2.	 Triads: 036, 037, 048;
	 3.	 Quartal: 027, 016;
	 4.	 Other (equipollent): 014, 015, 025, 026.

Each has a distinctive shape under the hand: clusters have their notes very close 
together, triads divide the octave nearly evenly, quartal chords have their notes 
clustered in two antipodal regions of pitch-class space, and the other/equipollent 
chords have two close notes with the third note at some distance—farther apart 
than the third note of a cluster, but closer than the third note of a quartal trichord. 
From this point of view, 014 is nearly clustered, while 026 is both nearly quartal 
and nearly tertian.38

38  The nearly tertian quality of the 026 trichord is exploited in R64 and R68 of Stravinsky’s Petrushka and R89 of Rite of Spring, 
where the upper voices move in parallel major thirds while the lower voice moves so as to alternate between the minor triad 
and the 026 trichord; this is an example of Jonathan Russell’s (2018) “kaleidoscopic oscillation.”
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Because I am biased toward thirds, I have always understood the “other” 
chords as gapped stacks of thirds. But we can also describe them as incomplete 
clusters or incomplete fourth chords: given the notes BCE, we can add D to form 
the cluster BCDE, G to form the tertian CEGB, or F to form the quartal CFBE. 
Thus BCE is equally balanced between the worlds of step, third, and fourth; I 
therefore say that it belongs to the equipollent category. The tertian hearing is 
of course culturally privileged, but let us put that aside while working out the 
abstract logic of the situation.

Summing up, we can say that every chromatic trichord either is a near 
interval cycle—cluster, triad, or quartal—or is equally balanced between these 
options, a “gapped” cycle missing one note, no matter which type of interval 
we choose.39 Every cyclic chord has a characteristic voicing that brings out its 
cyclic structure. For trichords, the characteristic voicing is always close position 
(cf. Figure 1.3, where the close-position voicing is labeled CTQ, or Figure 2.2, 
where the characteristic voicings appear on the top staff). For these chords, the 
terms cluster, tertian, and quartal describe intrinsic qualia that can be reinforced 
by voicing but need not be, as they will sound clustered or tertian or quartal no 
matter how their notes appear in pitch. For equipollent chords, these same terms 
describe registral arrangements rather than intrinsic qualities. Suppose, for exam­
ple, we want to emphasize that BCE is a near cluster; we can do this by voicing 
it in close position as a gapped stack of seconds, BC•E. If we instead want to 
emphasize its identity as an incomplete tertian sonority, we can voice it in close 
position as a gapped stack of thirds, CE•B. If we want to emphasize its quartal 
character, we should voice it in open position as a gapped stack of fourths, C•BE. 
Different voicings highlight different aspects of the set’s interval structure.

Remember that only some of the chord’s registral inversions bring out its 
cyclic quality: the voicings C4–D4–E4 and D4–E4–C5 are both in close posi­
tion, but only the first is clustered. Looking back at the opening of Schoenberg’s 
op. 11/1 (Figure 3.1), we see that the accompaniment presents a series of equi­
pollent chords voiced as gapped fourth stacks, with a seventh separating the 
lower two notes; these gapped quartal voicings are preceded by an open-position 
016 trichord, perhaps priming us to hear the later chords’ quartal structure. It is 
also worth noting that the nearly quartal voicing of the 014 trichord, appearing 
as Schoenberg’s B♭•AD♭, is anomalous within the equipollent group, its “quartal” 
voicing involving a four-semitone near fourth A–D♭. It is the only equipollent 
chord having this quality, residing near the boundary between equipollent and 
cluster.

All of this suggests a series of ear-training exercises. One could start with 
cyclic voicings of cyclic trichords, using pitch and register to reinforce pitch-class 
content. Having mastered this comparatively simple task, one might then pro­
ceed to “open” voicings in which adjacent notes are separated by fifths, sixths, and 

39  My taxonomy of trichords is reasonably similar to those offered by Ernst Krenek and Paul Hindemith (see Harrison 2016: 
49–57).

D
ow

nloaded from
 http://read.dukeupress.edu/journal-of-m

usic-theory/article-pdf/67/1/1/1973785/1tym
oczko.pdf?guestAccessKey=1f7c6515-12d0-4c5d-9759-2b0eb8eedee3 by guest on 18 June 2023



27Dmitri Tymoczko    Approximate Set Theory

sevenths; these are harder to recognize as the ear needs to comprehend widely 
separated notes. One could then proceed to consider arbitrary spacings, empha­
sizing pitch-class content at the expense of voicing and pitch. But it would also 
be possible to go in the other direction, asking students to recognize the differ­
ent equipollent voicings. Here pitch-class content is irrelevant, as every equi­
pollent chord can be voiced as a gapped cluster (close position and spanning 
4–6 semitones), as a gapped stack of thirds (close position and spanning 10–11 
semitones), or as a gapped stack of fourths (open position, spanning 15–16 semi­
tones). In this context adjectives like quartal and clustered refer only to spacing in 
pitch and not to intrinsic intervallic content. The ear-training task requires that 
we treat G3–F4–B♭4 as a gapped fourth stack rather than as a third stack, and 
D4–E4–G4 as a gapped stack of seconds.40 This requires attending to features 
often consigned to the domain of taste and intuition.

If we categorize trichords by the nearest equiheptatonic set-class (ignoring 
multisets), we recover the same classification:

	 1.	 Clusters (equiheptatonic 0127): 012, 013, 024;
	 2.	 Triads (equiheptatonic 0247): 036, 037, 048;
	 3.	 Fourth chords (equiheptatonic 0147): 027, 016;
	 4.	 Equipollent (equiheptatonic 0137): 0141, 015, 025, 0263.

The superscripts indicate that some of these chords are very close to a template 
other than that to which they are officially assigned: the notation 0141 indicates 
that the equipollent 014 almost belongs to category 1 (the clusters or one-step 
cycles), and 0263 indicates that the equipollent 026 is close to being quartal (cat­
egory 3, the three-step cycles).41

Practically speaking, there is no difference between chunking chromatic 
intervals and quantizing to the nearest equiheptatonic set-class. However, equi­
heptatonic quantization can help us understand deeper features of the underly­
ing musical logic. In the seven-tone universe there are only four trichords: the 
cluster 0127, the triad 0247, the fourth chord 0147, and the equipollent 0137 (along 
with its inversion 0237). The 0137 set can easily be seen to be a gapped cluster 
0–1–[2]–37, a gapped tertian chord 1–3–[5]–07, and a gapped fourth chord 1–
[4]–0–37. This last arrangement spans more than an octave and hence requires 
an open-position voicing. The equipollent set-class is the only one that is not 
inversionally symmetrical, with its inversion 0237 turning the preceding shapes 
upside down: 0–[1]–2–37, 3–[5]–0–27, and 0–3–[6]–27.

Equiheptatonic categories can help us track what might otherwise feel like 
an overwhelming abundance of musical possibilities. The top line in Figure 4.1 
shows a sequence of voice-leading moves in diatonic space, here representing 

41  Subscripts and superscripts have very different meaning: subscripts identify the size of a containing scale, whereas  
superscripts identify near-membership in various approximate set-classes.

40  Interested readers are invited to explore an ear-training website I have built (https:​/​/www​.madmusicalscience​.com​ 
/eartraining​-voicing​.html).
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the equiheptatonic scale. The voice leading in question is what I call the basic 
voice leading, a template that combines with transposition to generate all the 
spacing-preserving voice-leadings between transpositionally related trichords 
(Tymoczko 2020b). Underneath the example I show how the equiheptatonic 
pattern appears in chromatic space. These chromatic variants can be understood 
as manifestations of the same equiheptatonic template; though different in their 
details, they are broadly similar under the hand. The diatonic/equiheptatonic 
model can thus function as a mnemonic, a tool for internalizing a large number 
of chromatic options.

Now let us reconsider these phenomena from the point of view of concrete 
scale membership. For each of the twelve chromatic trichords we ask what scalar 
set-classes it forms when embedded in the seven-note Pressing scales (diatonic, 
acoustic, harmonic minor, and harmonic major):

	 1.	 Clusters (scalar 0127): 013, 024, 014;
	 2.	 Triads (scalar 0247): 036, 037, 048;
	 3.	 Fourth chords (scalar 0147): 027, 016;
	 4.	 Equipollent (scalar 0137): 014, 015, 025, 026;
	 5.	 None: 012.

There are two main differences from the previous lists: there is no Pressing scale 
containing the 012 chromatic cluster, and the 014 trichord is both cluster-like and 
equipollent.42 (In lists of set classes, I use boldface to identify chords belonging 
to multiple categories.) This ambiguity recalls a fact mentioned earlier, that the 

Figure 4.1.  Chromatic voice-leading possibilities understood  
with reference to a diatonic (or equiheptatonic) template.  
In each column the chromatic voice leadings can be understood  
as manifestations of the diatonic template at the top. Beneath  
each column is a heuristic description of the underlying pattern.

42  As discussed in section 2, I discard unusual embeddings, such as the fourth chord G–A♯–D.
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“incomplete quartal” voicing of the 014, C–[f]–B–E♭, requires a four-semitone 
“near fourth.” In other words, the 014 trichord is the most clustered of the equi­
pollent chords.

These ideas have a beautiful geometry. Figure 4.2A labels chromatic and 
equiheptatonic set-classes within the continuous space representing three-note 
set-classes. The space is bounded on left and right by the line of generated collec­
tions (interval cycles), which appears to change direction at the vertex of the tri­
angle: beginning at the lower left with the triple unison 000; ascending along the 
left boundary as the size of the generating interval increases; passing through 012, 
024, and 036 and then reaching the augmented triad at the top of the triangle; 
further increasing the size of the generator moves us downward along the right 
boundary until we reach the tritone with doubled note (060 or 006). Increasing 
the generator beyond that point retraces this same path in the opposite direc­
tion. (The bottom of the space contains multisets, which I ignore.) Figure 4.2A  
highlights regions containing the different chord categories, enclosing clusters 
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027026025024

015 016014013012

003 004 005 006002001000
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012
013 014

000 001 002 003

cluster

tertian quartal
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B

Figure 4.2.  A. Three-note set-class space, with regions corresponding to clustered  
(triangle), tertian (quadrilateral), quartal (pentagon), and equipollent (oval) set- 
classes. Small italic labels show equal-tempered chromatic sets; large bold labels  
show equiheptatonic set-classes. B. Single-step voice leadings among equihepta
tonic set-classes.
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in a triangle, triads in an quadrilateral, and quartal harmonies in a pentagon. 
Equipollent chords are in an oval at the center of the space, equally far from the 
boundaries. There are multiple chromatic chords in each region, gathering the 
isolated points of traditional set theory into larger communities—countries 
rather than city-states. There is also a single equiheptatonic collection in each 
region, serving as an abstract prototype and occupying a position remarkably 
close to the region’s center. This is the geometrical link between the approximate 
twelve-tone and exact seven-tone worlds. Figure 4.2B presents a more abstract 
graph that shows how the approximate set-classes are related by single-step voice 
leading, with the equipollent chord in the center of the network.

Interval cycles are central to a range of chord-classification systems, dating 
back to Cowell, Persichetti, and Howard Hanson and continuing with the work 
of Forte, Quinn, Jason Yust, Richard S. Parks, and Robert D. Morris.43 Cowell, 
Persichetti, and I are the only writers in this group who use coarse-grained generic 
intervals rather than fine-grained chromatic species (e.g., “second” instead of 
“major second”). In my view these approximate categories have many advan­
tages. One is their close connection to compositional possibility: chords within 
a category often have similar capabilities (e.g., all the equipollent chords have an 
open-position voicing in which one pair of adjacent notes is separated by about 
five semitones while the other pair is separated by about twice that distance). 
They are also conducive to compositional flexibly, encouraging composers to use 
a range of closely related set-classes rather than just one (e.g., using both 027 and 
016 rather than just 027). Perceptually, approximate categories leave room for 
listener imperfection, allowing that people might sometimes be able to hear that 
a chord is quartal without identifying its exact intervallic structure. Finally, they 
allow us to view similar phenomena from both chromatic and scalar perspec­
tives, showing that the same procedures might be used in both tonal and atonal 
contexts—or in music combining tonal and atonal ideas.

And even though we are using approximate categories, we can still make pre­
cise analytical statements about their relationships. In previous work I have shown 
that any n-voice voice leading can be generated by repeatedly applying five ele­
mentary transformations: transposition along a chord, transposition along a scale, 
spacing-preserving neo-Riemannian transformations, normal-form-preserving  
perturbations, and pairwise voice exchanges (Figure 4.3). All but the voice 
exchanges preserve voicing, or spacing in chordal steps; all but the perturbations 
preserve set-class.44 These same voice leadings can be found in the approximate 
domain as well—simple transformations complementing the simple chord cate­
gories of approximate set theory.

43  Cowell (1930) 1996; Hanson 1960; Persichetti 1961; Forte 1988; Parks 1989; Morris 1982, 1993, 1997; Quinn 2001, 2006, 2007; 
Yust 2016.

44  Unrestricted perturbations can be chained together to produce any bijective voice leading whatsoever; following John 
Roeder (1984, 1987), I limit them to those relating normal-form chords. In approximate set theory we often want to distin
guish perturbations that preserve approximate set-class from those that do not.
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Figure 4.4 uses these transformations to analyze the voice leadings con­
necting the accompanimental trichords in the opening of Schoenberg’s op. 11/1. 
All but chord 7a are in open position with a seventh between the lower two 
voices; all but chords 5 and 7a used the gapped quartal voicing on Figure 2.2. 
Most are equipollent 0137 trichords, though there are two “near equipollents” a 
semitone away. (To treat these as near equipollents is to recognize the fuzziness 
of the boundaries between approximate set-classes.)45 At each change of chord 
there is a single-step perturbation that slightly alters the underlying set-class. 
The first three voice leadings are what Joseph Straus (2003) describes as “nearly 
transpositional,” moving voices by nearly the same amount. The fifth chord is an 
0237 trichord, connected to its neighbors by the neo-Riemannian voice leading 
preserving the lower-voice seventh (J0).46 The final voicing is in close position, 
with the melody’s B♭ supplying the expected tenth above the bass. While this 
analysis is technical and precise, the underlying relationships are quite intuitive, 
simple hand shapes transformed in simple ways: open-position trichords voiced 
with a tenth in the bass. The surprise is that intuitive exploration gives rise to 
such a complex yet surveyable landscape.

As a modernist icon, Schoenberg’s op. 11/1 is rivaled only by Igor Stravinsky’s  
Rite of Spring—a piece that also begins with open-position equipollent trichords 

Figure 4.3.  The five basic voice-leading transformations: transposition along an  
extrinsic scale, transposition along the intrinsic scale, neo-Riemannian voice leadings,  
normal-form preserving perturbations (not needed when chords are TI-related), and  
the small voice exchange c0 that swaps the chord’s closest notes, moving them in  
exact contrary motion by the smallest possible distance.

45  Schoenberg uses every approximate set-class containing a step, which is to say, every approximate set-class other than 
tertian.

46  As in section 1 above, I use neo-Riemannian voice leading to refer to spacing-preserving voice leadings from a chord to its 
inversion. The voice-leading J0 is the neo-Riemannian voice leading preserving the notes of a pitch-class set’s smallest inter
val. For a consonant triad, this is the neo-Riemannian L transformation. The voice leading J2i preserves the pair of notes i steps 
below the smallest interval in the inversional normal ordering, considered as circular. For a consonant triad, J1 is R and J2 is 
P. For odd cardinality, this defines all the operations Ji. For even cardinality, the odd inversions J2i + 1 preserve the notes of the 
two-step intrinsic interval between the upper note of the intrinsic step preserved by J2i and the lower note of the intrinsic step 
preserved by J2(i + 1). So, for the chord A–B–D–F, J0 preserves (A, B), J1 preserves (F, B), J2 preserves (F, A), and J3 preserves (D, A). 
For a chord with multiple smallest intervals, different analytical circumstances may suggest different choices about which 
voice-leading to label J0. These definitions derive from the definition of ix in Tymoczko 2020b: 32–33. Readers can explore 
these transformations using my online voice-leading calculator at https:​/​/www​.madmusicalscience​.com​/nr​.html.
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with a fixed distance between their lower two voices. Figure 4.5 shows that the 
fixed distance is a fourth and that all the chords belong to the same approximate 
set-class. The passage uses just three transformations: the single-semitone dis­
placement exchanging 045 and 035 trichords (or their inversions, 015 and 025), 
the neo-Riemannian voice leading J2 preserving the lower-voice fourth, and chro­
matic transposition.47 All of the approximate 023 chords are voiced as gapped 
fourth stacks, giving the passage a quartal quality.48 It is intrinsic to the musi­
cal logic that the approximate 013 trichords are not gapped fourth stacks, for if 
one wants open-position voicings between approximately inversionally related 
trichords, then one has to choose between lower-voice parallelism and the 
gapped quartal spacing. Figure 4.6 includes two recompositions illustrating this 
dependency. Both use the same melody, the same open-position voicing, and the 
same sequence of exact and approximate set-classes. The first shifts the parallel­
ism to the outer voices so that they move in approximate tenths; this constraint, 

Figure 4.4.  Voice leadings at the opening of Schoenberg’s op. 11/1. To obtain the progression, 
apply the perturbation and then the transformation. For example, starting with the first chord, 
move B to A and then transpose up by four semitones. Almost all the trichords are in the “A” 
arrangement, with a seventh between the lower two voices (10 or 11 semitones) and a major third 
or fourth between the upper two (4, 5, or 6 semitones); the fifth chord is generated from the neo-
Riemannian (NR) inversion J0, preserving the lower-voice seventh and moving the top voice so that 
it forms approximate set-class 023, the inversion of 013.

47  This analysis in terms of approximate inversion is due to Russell 2018.

48  Stravinsky’s fourth + seventh arrangement is the inversion of the more common seventh + fourth, appearing in 
Schoenberg’s op. 11/1.
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along with the open voicing and the shared set-class structure, ensures that every 
chord is a gapped fourth-stack.49 The second shifts the parallel fourths to the 
upper voices, moving the gapped quartal voicings to the approximate 013 sets, 
exactly where the original passage lacked them. I think the first recomposition 
sounds more quartal but less parallel than Stravinsky’s original, as all the harmo­

Figure 4.5.  The opening of Stravinsky’s Rite of Spring presents a series of equipollent trichords. The neo-
Riemannian J2 transform preserves the perfect fourth. Once again, apply the perturbation before the other 
transformations.

Figure 4.6.  A reduction of mm. 4–6 of Rite of Spring, along with two recompositions that shift the 
parallel motion to other pairs of voices. This moves the position of the gapped quartal voicings.

49  The preservation of exact set-class forces the parallelism to be approximate rather than exact, since 045 and 035 have 
different species of third.
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nies are voiced as gapped fourth stacks, but the parallelism is only approximate. 
The second recomposition has fewer gapped quartal voicings, but the parallel­
ism is clearer. Here approximate set theory reveals the complex interrelationships 
among the different features of Stravinsky’s phrase.

5. Tetrachords

Tetrachords offer a substantially more complex array of compositional possibil­
ities. Once again, we begin by “chunking” intervals, considering clusters to be 
stacks of seconds, tertian chords to be stacks of thirds, and quartal chords to be 
stacks of fourths:

	 1.	 Clusters (6): 0123, 0124, 0134, 0135, 0235, 0246;
	 2.	 Tertian (5): 0148, 0158, 02583, 03583, 0369;
	 3.	 Quartal (4): 0156, 0157, 0167, 02571;
	 4.	 Equipollent (4): 0137, 0237, 01361, 024713;
	 5.	 Noncyclic (10): 0126, 0127, 0347, 01251, 01451, 02361, 014613, 01473, 02482, 

026823.

Superscripts again indicate proximity to a second category: superscript 1 indi­
cates a near cluster with a single three-semitone step, superscript 2 indicates a 
near-tertian chord with a single diminished third, and superscript 3 indicates a 
near fourth chord with a single diminished fourth. Equipollence is defined inter­
vallically: when using clustering, an equipollent tetrachord is contained within a 
five-note cluster, tertian, and fourth chord.50

Each category has a distinctive shape under the hand: clusters have their 
notes as close together as possible, tertian chords divide the octave nearly evenly, 
quartal chords have two pairs of notes separated by roughly half an octave, and 
equipollent chords are grouped “3 + 1,” with three notes close together (but not 
too close) and an outlier about two steps away from the rest. Knowing the shapes 
allows you to immediately recognize a chord’s compositional potential.

Figure 5.1 shows the pitch-class content of a four-note interval cycle as the 
size of the generating interval g gradually increases: when g is four semitones or 
less, the interval cycle spans less than an octave; when g is between four and six, 
the top note lies between the octave transposition of the first and second notes, 
producing the (2, 1, 2) voicing. Thus the characteristic voicing is close position 
for clusters and tertian chords, and (2, 1, 2) or “drop 2” for fourth chords. As 
before, the equipollent chords use different voicings to express their different 
affiliations: to represent ABCE as an incomplete stack of seconds, we use close 
position (ABC•E); to represent it as an incomplete stack of thirds, we use the (2, 
1, 2) voicing (ACE•B, or A b C E a B); and to represent it as an incomplete stack 
of fourths, we use the (3, 2, 1) voicing (C•BEA or C e a B c E A). The equipollent 

50  In general, we can define an n-note chord as equipollent if it is contained within an (n + 1)–note cluster, stack of thirds, 
and stack of fourths.
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35Dmitri Tymoczko    Approximate Set Theory

FABC, the inversion of ABCE, instead uses the (1, 2, 3) voicing to express its 
near-quartal aspect (CFB•A or C F a B c f A).

These voicings are systematically related by a series of octave displace­
ments: to go from close position to (2, 1, 2) we can move the second lowest note 
up by an octave; to go from (2, 1, 2) to (3, 2, 1) we can repeat the procedure, 
moving the second lowest note up by an octave once again (Figure 5.2).51 Figure 
5.3 graphs this process: moving between concentric squares changes the voic­
ing, while moving along the squares transposes along the intrinsic scale, changing 
registral inversion. Though the graphs look simple on the page, it takes consider­
able effort to internalize them: interested readers might practice moving between 
these voicings on their instrument, changing set-classes and adding extrinsic 
transposition as they get more comfortable.

Arranging the cycles in the circular order cluster → tertian → quartal → 
(cluster) reveals an interesting symmetry: each approximate set-class is a singly 
gapped stack of its successor’s intervals and doubly gapped stack of its predeces­
sor’s intervals. Thus the cluster is a singly gapped third stack, DF•CE voiced (2, 1, 
2) in intrinsic steps, and a doubly gapped fourth stack, E•D•CF voiced (3, 3, 3).  
The tertian chord is a singly gapped fourth stack, GC•BE voiced (2, 3, 2), and 

0 0

open circles are lower-octave notes

g 

g 

Figure 5.1.  Generated tetrachords with generating intervals g = 2 and 5.

51  These transformations generalize guitarists’ drop-2 and drop-3 nomenclature. Alternatively, as noted in Bicket 2001, one 
can obtain the (2, 1, 2) voicing (which pianist Barry Harris called “long”) by crossing the outer notes of a close-position voicing 
(a “short chord” in Harris’s terminology).

Figure 5.2.  Octave displacements relating 
the close, tertian, and (3, 2, 1) or (1, 2, 3) 
voicings. Either the second lowest note 
moves up by an octave or the second 
highest note moves down by an octave.
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Figure 5.3B.  A transformational graph relating voicings of ACDE. 
Boldface shows the gapped clustered, gapped tertian, and gapped 
quartal voicings.

ABCE

ACEB

AEBC

E
A

B
C

E
B

C
A

E
C

A
B

B
C

E
A

B
E

A
C

B
A

C
E

CEAB

CABE

CBEA

ra
ise

 se
co

nd
lo

wes
t

lo
wer

 h
ig

he
st

lo
wer

 hi
gh

es
t

lo
wer

 se
co

nd

lo
wes

t

(1, 1, 1)

(2, 1, 2)

(3, 2, 1)

Figure 5.3A.  A transformational graph relating voicings of ABCE. 
Boldface shows the gapped clustered, gapped tertian, and gapped 
quartal voicings.

ACDE

DACE

CDAE

C
D

E
A

E
C

D
A

D
E

C
A

E
A

C
D

C
E

A
D

A
C

E
D

DEAC

ADEC

EADC

lo
wer

 se
co

nd

hi
gh

es
t

ra
ise

 lo
wes

t

ra
ise

 lo
wes

t

lo
wer

 se
co

nd

hi
gh

es
t

(1, 1, 1)

(2, 1, 2)

(1, 2, 3,)

D
ow

nloaded from
 http://read.dukeupress.edu/journal-of-m

usic-theory/article-pdf/67/1/1/1973785/1tym
oczko.pdf?guestAccessKey=1f7c6515-12d0-4c5d-9759-2b0eb8eedee3 by guest on 18 June 2023



37Dmitri Tymoczko    Approximate Set Theory

a doubly gapped cluster, G•BC•E in close position. And the fourth chord is a 
gapped cluster in close position, CD•FG, and a doubly gapped third stack, 
DF•C•G (1, 2, 3). These voicings are shown on the second staff of Figure 2.2.

This symmetry can be understood with reference to diatonic quantization. 
John Clough (1979, 1994) and Jason Yust (2009) have noted that, in any seven- 
note scale, the M2 transform sends steps to thirds, thirds to fifths, and fifths to 
ninths, which are steps when we ignore octave; indeed, a sequence of three suc­
cessive M2 transforms preserves pitch class (Figure 5.4).52 This explains the 
relations among the different approximate set-classes: a cluster, or gapped third 
stack, becomes a tertian chord when its intervals are multiplied by 2, and the clus­
ter’s “gapped tertian” voicing becomes “gapped quintal” (which per the appendix 
can be converted into gapped quartal). Figure 5.4 shows that the equipollent set- 
classes are invariant under this M2 transform, which in turn explains their status 
as gapped stacks of each interval.53

Once again, we can imagine a sequence of ear-training exercises, starting 
with the cyclic tetrachords voiced cyclically and progressing to the different 
voicings of the equipollent tetrachords. Here there is the added wrinkle that a 
tetrachord’s intrinsic interval structure can conflict with its pitch-space arrange­
ment. Intrinsically, the tetrachord C–D–E–F is clustered and not at all tertian, 
yet it can be arranged in register as an incomplete third stack, D4–F4–C5–E5. 
To my ear this arrangement sounds like a ninth chord. Something similar could 
be said for E3–B3–C♯5–G♯5, which sounds very much like a stack of fifths (miss­
ing only F♯4) despite having the abstract pitch-class content of a minor-seventh 
chord. Once again we see how chord quality depends on compositional choice: 
a student who treats D4–F4–C5–E5 as a cluster or E3–B3–C♯5–G♯5 as a minor- 
seventh chord, full stop, will likely be missing something. Pitch class does not 
always trump pitch.

Figure 5.4.  In a seven-tone scale, the M2 transform 
sends clusters to tertian, tertian sets to quartal, 
and quartal to cluster. The equipollent set-
classes (open note heads = trichord, closed note 
heads = tetrachord) are preserved under the 
transform.

52  Thanks here to Jason Yust.

53  The equipollent trichord C–D–F–(C) has step intervals 1–2–4, which are circularly permuted by M2, becoming 2–4–1 and 
4–1–2. In other words, the trichord’s internal intervallic structure mirrors the orbit of the transformational cycle.
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There are also tetrachords without manifest cyclic structure. The major­
ity of these are very nearly cyclic and can be assigned to the appropriate catego­
ries; indeed, both the 0268 French sixth and the 0248 “dominant seventh sharp 
five” are often categorized as nearly tertian. The remaining noncyclic sets can be 
understood as gapped but not equipollent; 0127, for example, can be expressed 
as a singly gapped stack of fourths 271•0 but not as a singly gapped stack of sec­
onds or thirds; in this respect it is more quartal than tertian or clustered. One 
way to put this is that, while we can still voice these chords in the characteristic 
ways—as a cluster, stack of thirds, stack of fourths, or the various “equipollent” 
voicings—none of these voicings will be markedly even; these chords are more 
intervallically heterogeneous than those in the first four categories. What is sur­
prising is not that such chords exist but that they comprise such a small part of 
the tetrachordal universe.54

Turning to concrete scale membership we obtain very similar categories:

	 1.	 Clusters (6, scalar 01237): 0134, 0135, 0145, 0235, 0236, 0246;
	 2.	 Stacks of thirds (5, scalar 02467): 0148, 0158, 0258, 0358, 0369;
	 3.	 Fourth chords (6, scalar 01347): 0146, 0147, 0156, 0157, 0257, 0268;
	 4.	 Equipollent (8, scalar 01247): 0136, 0137, 0147, 0236, 0237, 0247, 0248, 0347;
	 5.	 Octatonic (1, scalar 01458): 0167;
	 6.	 None (5): 0123, 0124, 0125, 0126, 0127.

The two systems agree completely about the tertian category and about the 
majority of the other cases. Many disagreements reflect minor differences of 
emphasis; 0146, for example, is a scalar fourth chord, but a near fourth chord in 
the chunking approach.

Categorizing chords by equiheptatonic quantization gives the following 
categories:

	 1.	 Clusters (7, equiheptatonic 01237): 0124, 0134, 0135, 0145, 0235, 0236, 
02463;

	 2.	 Stacks of thirds (7, equiheptatonic 01357): 0148, 0158, 0369, 035834, 0268, 
02584, 0248;

	 3.	 Stacks of fourths (7, equiheptatonic 01347): 0156, 014614, 01572, 02574, 0268, 
02584, 01472;

	 4.	 Equipollent (10, equiheptatonic 01247): 0126, 0137, 0237, 01361, 03471, 
024723, 0236, 02463, 0248, 01472;

	 5.	 None (4): 0123, 01251, 01673, 01274.

This is a similar list with the same basic hand shapes: clusters, triads, quartal 
chords grouped 2 + 2, and equipollent chords grouped 3 + 1.55 However, the 
categories overlap more than in the other systems. Once again, equiheptatonic 

54  Some of these noncyclic sets are quite close to equiheptatonic multisets, which I discard in my categorization. Hanson 
1960 has an analogue to my noncyclic category.

55  Once again, boldface is used for chord duplication, and superscripts are used to indicate proximity to some category other 
than the one to which a chord is assigned thus 0146, though closest to the equiheptatonic fourth chord, is fairly close to the 
cluster (with just one interval of size 3) and fairly close to the equipollent category.
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categories can help us understand voice leading; for example, a descending-fifth 
progression of equiheptatonic fourth chords can be voiced with pairs of voices 
descending in alternating steps, and similar patterns are available in twelve-tone 
equal-temperament (Figure 5.5).

Figure 5.6 compares the different systems, aligning tetrachords spatially. I 
do not plan to adjudicate among them, as I am more impressed by their conver­
gence than by their differences. In each case there are four basic chord shapes: 
clusters and tertian tetrachords, whose cyclic structure is manifest in close posi­
tion, fourth chords grouped 2 + 2, and “equipollent” chords grouped 3 + 1, plus a 
few outliers. An atonal composer might think about these shapes using approxi­
mate interval sizes, a tonal musician might think about how they sit inside famil­
iar scales, and a computationally savvy music theorist might derive them via 
equiheptatonic quantization. Different musicians may also draw slightly different 
boundaries—one considering 0146 a near cluster, another considering it a near 
fourth chord. The details are less important than the big picture.

That picture again has an elegant geometry, though it is more difficult to 
visualize since four-note set-class space is inherently three-dimensional. Figure 
5.7 graphs a two-dimensional cross section of the space, containing all tetrachords 
whose smallest interval is a semitone; superimposed on it is the one-step layer of 
equiheptatonic space, containing all the equiheptatonic tetrachords without dou­
blings. (These equiheptatonic set-classes lie in the third dimension, a centimeter or 
so above the paper.) The line of generated tetrachords passes three times through 
the semitonal chromatic layer at the three points marked with circles: 0123 (which 
also appears on the figure as 012B), 0, 3.66, 7.33, 11 (which is on the boundary in 
the 0135 region), and 0, 5.5, 11, 4.5 (on the boundary in the 0134 region). Each of 
these intersections corresponds to a cyclic category: the triangular region contains 
clusters, the quadrilateral contains third stacks, and the pentagon contains fourth 
stacks. These are again contiguous regions in the space, though now with some 
overlaps and with a few chords outside each region. Equiheptatonic prototypes are 
very close to the center of the regions they represent.

Figure 5.5.  Efficient descending-fifth voice  
leading connecting quartal voicings, in both  
diatonic and chromatic space.
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Analytically, this perspective helps us conceptualize relationships that 
might otherwise be difficult to describe. Schoenberg’s Pierrot Lunaire opens 
with a heavy emphasis on thirds (Figure 5.8): the piano alternates between a ter­
tian trichord and an equipollent tetrachord voiced as a gapped third stack, while 
the violin and flute combine to form a smeared triad.56 The two tetrachords are 
members of the same set-class, but I am not certain that is important: given how 
many sets can be found in this music, and the paucity of systematic relationships, 
I find it more satisfying to listen approximately. Not only are the approximate 
relationships easier to hear, but they are more reliably present—indeed, they are 
characteristic of Schoenbergian atonality.

Another example comes from Hans Stuckenschmidt (1965), who observed 
that the progression in Figure 5.9 appears in the work of both Alban Berg and 

chunking
concrete

scale
7tet

1. clusters

0123, 0124, 

0134, 0135, 

0235, 

0246

0134, 0135, 

0145, 0235, 

0236, 0246

0124, 

0134, 0135, 

0145, 0235, 

0236, 02463

2. tertian

0148, 0158, 

02583,02593, 

0369

0148, 0158, 

0258, 0259, 

0369

0148, 0158, 

02584,025934, 

0369, 0268, 

0248

3. quartal
0156, 0157, 

0167, 02571

0146, 0147, 

0156, 0157, 

0167, 0257, 

0268

014614, 01472, 

0156, 01572, 

02574, 

0268, 02584

4. equipollent

01361, 0137, 

0237, 024713

0136, 0137, 

0237, 0247, 

0147, 0236, 

0248, 0347

01361, 0137, 

0237, 024723, 

01472, 0236,

0248, 03471 

02463, 0126

noncyclic

01251, 0126, 

0127, 

0347, 01451, 

02361, 014613, 

01473, 02482, 

026823

0123, 0124, 

0125, 0126,

0127

0123, 

01251, 01673, 

01274

Figure 5.6.  Comparing the three different classification systems:  
chunking, concrete scale, and equiheptatonic (7tet). Tetrachords  
are aligned spatially within each row.

56  The 0147/0367 tetrachord is equipollent in the concrete scale and equiheptatonic approaches but not in the chunking 
approach.
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 Figure 5.9.    A progression used by both Debussy and Berg.

 Figure 5.8.    Tertian structures at the start of Schoenberg ’ s 
Pierrot Lunaire.

0156 0157 0158

0145
0146 0147 0148

0149

0134
0135 0136 0137 0138 0139 013A

0123 0124 0125 0126 0127 0128 0129 012A 012B

0167

0134

0123 0124 0125 0126

0135

 Figure 5.7.    The single - semitone layer of chromatic tetrachordal set - class space, superimposing 
the one - step layer of diatonic tetrachordal set - class space. Circles represent generated collections. 
Shapes represent clustered (triangle), tertian (quadrilateral), quartal (pentagon), and equipollent 
(oval) set - classes. Small italic labels show equal - tempered chromatic sets; large bold labels show 
equiheptatonic set - classes.
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Claude Debussy. In Debussy one can interpret it as a distorted descending-fifth 
sequence alternating diatonic and altered-scale dominants; indeed, the progres­
sion is idiomatic in jazz and related genres. The more interesting question is how 
it functions in the nonscalar and almost atonal idiom of Berg’s op. 2. Here it is 
useful to attend to the superimposed melodic intervals, perfect fourths in the bass 
against semitones in the upper voices, combining to produce somewhat quartal 
harmonies: a gapped fourth chord B♭•A♭DG alternating with the nearly quartal 
E♭GCF♯. One might think of the melodic intervals as rigid structures analogous 
to the twelve-tone ordering in Figure 1.8; the near-quartal verticalities are a resul­
tant structure analogous to the approximate relationships discussed at the end 
of section 3. Approximate set theory thus helps us recognize similar patterns of 
thought appearing across the tonal/atonal boundary—not just in Berg’s tonality 
and Schoenberg’s twelve-tone music, but in Debussy as well.

A third example is the mysterious passage near the start of The Rite of Spring 
(Figure 5.10): a lower-register fourth moves in regular waves while an upper-register  
fourth alternately forms a smeared fourth stack and a nearly quartal voicing, (0, 5, 
7, 12) and (0, 5, 9, 2) in semitones. I think pitch is as important as pitch class here: 
it is not just that the Stravinsky deploys two kinds of tetrachord each containing a 
pair of perfect fifths, 0057 and 0257, but that he voices the chords to highlight the 
intervallic resemblance.57 Pitch and pitch class together create the musical effect.

Such passages reinforce the claim that nontonal music combines two differ­
ent kinds of structure: a rigid syntax involving exact pitch-class relationships (sets, 
rows, etc.), and a more flexible system of approximate relationships, often man­
ifested in pitch. The rigid structure underwrites the comparatively high-prestige  
discipline of posttonal theory and has dominated the discourse surrounding 
this music. The more flexible structure has been relegated to the less prestigious 

Figure 5.10.  Measure 32 of Rite of Spring.

57  This is very similar to Figure 4.5 and one of many passages in the Rite where one group of voices move in parallel while 
the remaining voices alternate to create two different set-classes, a technique Russell (2018) has called “kaleidoscopic  
oscillation.”
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domain of pedagogy and “composerly intuition”—and sometimes dismissed alto­
gether.58 The concept of voicing, understood by way of the intrinsic scale, allows 
us to make precise observations about this more flexible realm: the passages we 
have considered depend not just on pitch-class content, but on how pitch classes 
are placed in register. In many cases these pitch structures are immune to small 
perturbations, allowing us to identify commonalities invisible to standard post­
tonal theory. Approximate listening thus provides a middle ground between set-
theoretical exactitude and a very general gestural listening that disregards details 
in favor of broad trajectories of register, contour, and texture.59

6. Pentachords

Equiheptatonic quantization provides the simplest view of the pentachordal 
universe:

	 1.	 Clusters (9, equiheptatonic 012347): 01246, 01346, 01356, 01457, 02357, 
013472, 013572, 02458, 024683;

	 2.	 Tertian (9, equiheptatonic 012357): 01248, 01348, 01358, 01458, 023581, 
024693, 02458, 024683, 01369;

	 3.	 Quartal (9, equiheptatonic 012457): 01268, 01468, 01478, 01568, 02479, 
013682, 014692, 0236812, 01369;

	 4.	 Noncyclic (14): 01234, 01235, 01236, 01237, 01245, 012561, 012571, 023461, 
023471, 034581, 0136713, 012472, 012582, 012673.

Clusters have their notes close together; tertian sonorities are arranged 4 + 1, with 
four notes close (but not too close) and one farther apart; and quartal chords are 
divided 3 + 2 into antipodal groups. In section 2 I showed that each cyclic cate­
gory has its own characteristic voicing: close position for clusters, (2, 1, 1, 2) for 
thirds, and open position for quartal chords.

These shapes provide a quick way to recognize pentachordal affordances. 
Suppose you randomly plunk your fingers down on the piano and come up with 
the notes D–E–F–A–B♭. The nearly-even 3 + 2 pattern alerts you to the presence 
of quartal structure in open position: starting on F, the top note of the group 
of three, gives F–B♭–E–A–D: three perfect fourths and one “near fourth” or tri­
tone. Other registral inversions are not quite so quartal: starting on D produces 
D–F–B♭–E–A, with a minor third replacing a perfect fourth. Conversely, the 
absence of 4 + 1 structure indicates that the chord is not a stack of thirds, and 

58  This is not just a conflict between theory and practice but a tension within practice, for the post-Webernian tradition ele
vated exactitude, abjuring not only Schoenberg’s neo-Wagnerian rhetoric but also his interest in approximate pitch shapes. 
See, e.g., Boulez’s (1968: 268) essay “Schoenberg Is Dead.”

59  To some extent gestural listening is modeled by the theory of contour, but contour theory discards pitch entirely while 
assuming precise recognition of ordinal positions: B4–G♯4–G4–A4 is considered to have the same contour as E6–C2–B♭0–B4, 
namely, (3, 1, 0, 2), but a different contour from E4–C4–B♭3–B3, which is (3, 2, 0, 1). This last sequence is intuitively quite close 
to the first—indeed, Schoenberg’s op. 11/1 presents one as a variant of the other—yet has a different contour. Unlike approxi
mate set theory, contour theory discards questions about distance altogether; unlike a truly gestural approach, it asserts the 
analytical relevance of subtle differences of ordering. See Morris 1993.

D
ow

nloaded from
 http://read.dukeupress.edu/journal-of-m

usic-theory/article-pdf/67/1/1/1973785/1tym
oczko.pdf?guestAccessKey=1f7c6515-12d0-4c5d-9759-2b0eb8eedee3 by guest on 18 June 2023



44 J O U R N A L  o f  M U S I C  T H E O R Y

indeed, the note E is not a third above or below any other note. By contrast, a 
different plunking of fingers might produce B–C♯–D♯–E–G, with the character­
istically tertian 4 + 1 structure; this has the tertian voicing C♯–E–G–B–D♯ but no 
particularly quartal voicing. Some sets are close to multiple categories: 02458 is 
both a near cluster with a single augmented second, and an exactly tertian ninth 
chord (D–F–A♭–C–E).

Also interesting is the absence of equipollent chords. Since 7 is a prime 
number, every nonzero interval cycles through all seven notes in the equihepta­
tonic scale. Since every two-note equiheptatonic set is cyclic, every five-note set 
must be as well. Thus, there are only three equiheptatonic classes of pentachord, 
and they are all interval cycles; there is no room in the equiheptatonic universe 
for a separate equipollent category. Instead, each interval cycle is a gapped cycle 
in the other two categories: the cluster CDEFG (or 012347) is an incomplete 
stack of thirds DF•CEG, voiced (2, 2, 2, 2), and an incomplete stack of fourths 
E•DGCF, voiced (4, 3, 1, 3); the third-stack DFACE is an incomplete cluster 
CDEF•A, voiced (1, 1, 1, 1), and an incomplete fourth stack EAD•CF, voiced 
(2, 2, 4, 3); and the quartal EADGC is an incomplete cluster CDE•GA, voiced 
(1, 1, 1, 1), and an incomplete third stack D•ACEG, voiced (3, 1, 2, 1).60 These 
possibilities are shown on the third staff of Figure 2.2. Cyclic structure is less a 
property of set-classes than of registral arrangement.

Here we encounter a fascinating phenomenon, the quasi-complementarity 
of approximate set-classes with sizes n and 7 – n: trichords and tetrachords, dyads 
and pentachords, the singleton and hexachords. There are equipollent trichords 
and tetrachords but not pentachords or hexachords. There are three approxi­
mate classes of dyads and pentachords, all cyclic, but only one class of unison 
and hexachord. From an exact twelve-tone perspective there would be no reason 
to expect any relationship of this sort; indeed, one would hardly expect this cor­
respondence if one used only the chunking method. But if we understand the 
connection between approximate twelve-tone set theory and exact seven-tone 
set theory, we can see why it arises.

Once again, there are systematic transformations relating the close, tertian, 
and open voicings. Starting with close position we can displace the second low­
est note up by an octave, or the second highest note down by an octave, to obtain 
the tertian voicing (2, 1, 1, 2); from there we can displace the central note up or 
down by an octave to produce an open-position voicing; to go in the opposite 
direction, we octave-displace an outer note so that it lies within the chord (Figure 
6.1). The open-position voicings can also be internalized by conceiving approx­
imate pentachords tonally; Figure 6.2 shows one way to think about the three 
approximate set-classes, each open-position voicing cycling through a series of 
chordal elements (e.g., fifth → root → fourth → seventh → third → [fifth]). This tonal 
perspective can be conceived as purely calculational, a tool for understanding 

60  Julio Herrlein (2011: 162) observes that the pentachordal cluster can be voiced as a gapped stack of thirds.
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Figure 6.1B.  A transformational graph relating pentachordal voicings,  
using different octave displacements.

Figure 6.1A.  A transformational graph relating pentachordal voicings.  
Moving along the pentagon transposes along the chord; moving  
between pentagons relates voicings by octave displacement.
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chromatic space; generally speaking, it is hard to comprehend chromatic space 
without such heuristics.

The pentachordal universe also contains a number of noncyclic sets, most 
of which have three- or four-note chromatic clusters that cannot be replicated 
within the seven-tone universe (see section 2); many are reasonably close to 
some cyclic category, as indicated by their subscripts. Others can be represented 
as gapped stacks of one sort but not the other; 01256, for example, is a near 
cluster with a single augmented second, and a singly gapped fifth stack D–[g]–
C♯–F♯–C–F, but it is not a singly gapped third stack. Again, the surprise is how 
rare these noncyclic chords are: just five of the thirty-eight pentachords, if we 
assign near cycles to their closest category.

Concrete scale membership delivers similar results:

	 1.	 Clusters (8, scalar 012347): 01346, 01347, 01356, 01357, 01457, 02357, 02458, 
02468;

	 2.	 Tertian (7, scalar 012357): 01348, 01358, 01369, 01458, 02358, 02458, 02469;
	 3.	 Quartal (9, scalar 012457): 01368, 01369, 01468, 01469, 01478, 01568, 02368, 

02479;
	 4.	 Octatonic (1, scalar 012568): 01367;
	 5.	 None (16): 01234, 01235, 01236, 01237, 01245, 01246, 01247, 01248, 01256, 

01257, 01258, 01267, 01268, 02346, 02347, 03458.

As in our previous categorization, 02458 is both clustered and tertian, and 01369 
is both tertian and quartal. The None category contains all and only those penta­
chords with an 012 subset. The nearly quartal 01367 pentachord is anomalous, as 
it can only be embedded into the octatonic scale.

Categorizing pentachords by chromatic chunking gives five categories:

	 1.	 Clusters (10): 01234, 01235, 01245, 01246, 01346, 01356, 01357, 02346, 
02357, 024682;

	 2.	 Tertian (7): 01348, 01458, 013581, 023581, 024581, 013693, 0246913;
	 3.	 Quartal (5): 01267, 01268, 01568, 013681, 024791;
	 4.	 Equipollent (2): 014571, 02368123;

Figure 6.2.  One way to conceptualize the relations among open-position  
pentachordal voicings.

D
ow

nloaded from
 http://read.dukeupress.edu/journal-of-m

usic-theory/article-pdf/67/1/1/1973785/1tym
oczko.pdf?guestAccessKey=1f7c6515-12d0-4c5d-9759-2b0eb8eedee3 by guest on 18 June 2023



47Dmitri Tymoczko    Approximate Set Theory

	 5.	 Noncyclic (14): 01237, 012361, 012471, 012561, 012571, 013471, 023471, 
0136713, 0146813, 014783, 012482, 012582, 034582, 0146923.

Once again, there is general agreement with the other methods (Figure 6.3). All 
but one of the noncyclic sets could be considered cyclic under a slight loosen­
ing of intervallic criteria. While the equipollent category has disappeared in the 
other two systems, it still exists here: the two equipollent pentachords are subsets 
of six-note clusters, tertian chords, and quartal chords.

7. Hexachords

With hexachords the story takes a surprising turn as the categories of cluster, ter­
tian, and quartal merge. The underlying logic is again best illustrated by equihep­
tatonic quantization. A seven-note scale has only one six-note set-class, which is 

chunking
concrete

scale
7tet

1. clusters

01234, 01235, 

01245, 02346, 

01346, 01356, 

01357, 02357,

024682, 01246, 

01346, 01356, 

01357, 02357, 

02468,

01457, 01347, 

02458

01346, 01356,

013572, 02357, 

024683, 01246,

01457, 013472, 

02458

2. tertian

01348, 01458, 

013581, 023581, 

024581, 013693, 

0246913

01348, 01458, 

01358, 02358,

02458, 01369, 

02469

01348, 01458, 

01358, 023581, 

02458, 01369,

024693, 01248,

024683

3. quartal

01267, 01268, 

01568, 013681, 

024791

01568, 01368, 

02479, 01468, 

01469, 01478,

02368, 01369

01268, 

01568, 013682,

02479, 01468,

014692, 01478,

0236812, 01369

4. equipollent 013891, 02368123

noncyclic

0146813, 014783, 

0146923, 013471,

012361, 01237,

012471, 012561, 

012571, 023471,

034582, 012582,

012482, 0136713

01236, 01237, 

01247, 01256,

01257, 02347,

03458, 01258 

01248,

01234, 01235, 

01245, 01267,

02346, 01268, 

01246

01236, 01237, 

012472, 012561,

012571, 023471,

034581, 012582,

0136713, 

01234, 01235, 

01245, 012673

023461

Figure 6.3.  Comparing the different categorization systems:  
chunking, concrete scale, and equiheptatonic (7tet).
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equally clustered, tertian, and quartal; this means that a set like CDEFGA can be 
arranged as a stack of seconds, thirds (D e F g A C d E f G), or fourths (E f g A c D 
e f G a C d e F). Our three categories are now one and the same.

The twelve hexachords closest to the six-note equiheptatonic set-class are 
all familiar: 013468, 013469, 013478, 013568, 013569, 013578, 013579, 014579, 
023568, 023579, 023679, and 024579. These are truly equipollent in being equally 
clusters, stacks of thirds, and stacks of fourths. Smaller equipollent chords are 
gapped when arranged as stacks of seconds, thirds, and fourths; these hexachords 
can be shaped into ungapped cycles of each kind.61

In an ear-training context this is a significant shift. With smaller sets, the 
terms cluster, tertian, and quartal describe abstract pitch-class structure: a quartal 
trichord is one that can be arranged as a stack of fourth and tritones but can still 
sound quartal regardless of register; its saturation with fourths and tritones gives 
it a distinctive aural character. With hexachords these terms no longer divide set-
class space into separate regions; instead, they describe ways of deploying one 
and the same group of hexachords. Thus, in smaller cardinalities terms like quar-
tal have a double significance, referring both to internal intervallic constitution 
and to ways of arranging the chord in pitch. With hexachords the intrinsic mean­
ing evaporates, leaving only the pitch-space meaning.

This prompts a more general speculation. If we believe that the approxi­
mate perspective captures something important about music perception, and if 
we think that the registral arrangement of six-note chords—attacked at once, as 
chords—is sometimes hard to perceive, then we may start to wonder whether 
hexachords are more effectively deployed linearly, since a melodic or arpeggiated 
configuration is more comprehensible than a simultaneous verticality. Here, in 
other words, we may start to see the transition from sets, or objects that can be 
easily conceived as unified gestalts, to scales, or reservoirs of pitch classes not 
typically present at any one musical moment. These two kinds of object are not 
always distinguished, in part because scales can be modeled formally as very large 
sets. But they are arguably quite different in their phenomenology.

Hexachords have three common cyclic voicings, shown on the bottom 
staff of Figure 2.2: the stack of intrinsic steps (1, 1, 1, 1, 1) (clustered or close 
position), the distorted stack of two-step intrinsic intervals (2, 2, 1, 2, 2) (the 
tertian voicing), and the distorted stack of three-step intrinsic intervals (3, 
2, 3, 2, 3) (quartal).62 The clustered and quartal voicings can be arranged 
in chains: a sequence of hexachordal steps contains all the close-position 

61  Recall that the eleven-note chromatic chord is simultaneously a stack of semitones and perfect fourths; in much the same 
way, the six-note equiheptatonic set is simultaneously a stack of seconds, thirds, and fourths. Hexachords thus fail to satisfy 
what Quinn (2006) calls the “unique-genus property” since the equiheptatonic hexachord is simultaneously a paradigmatic 
cluster, tertian, and quartal chord: what are different genera at lower cardinalities merge in the case of hexachords.

62  Another cyclic voicing, (2, 1, 1, 1, 2) can be used to create stacks of seconds and thirds (see Figure A2 in the appendix). The 
voicing (2, 2, 3, 2, 2) is also reasonably common, offsetting the hexachord’s two intrinsic 0246 sets by three steps instead of 
one.
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voicings, and a sequence of alternating three- and two-step hexachordal inter­
vals contains all the quartal voicings (Figure 7.1). For a clustered hexachord, 
one of the (1, 1, 1, 1, 1) voicings is a stack of one- and two-semitone chromatic 
intervals; for a tertian hexachord, one of the (2, 2, 1, 2, 2) voicings is a stack of 
three- and four-semitone intervals; and for a quartal hexachord, one of the (3, 
2, 3, 2, 3) voicings is a stack of five- and six-semitone intervals. Our discovery 
is that these properties tend to go together: typically, a clustered hexachord is 
also tertian and quartal. Figure 7.2 shows how the clustered, tertian, and quar­
tal configurations appear in the opening measures of Berg’s Violin Concerto;  
these voicings recur throughout the piece, which thematizes approximate 
interval cycles.

Once again, these facts are not fundamentally dependent on the equihep­
tatonic or any other scale. Suppose we have some hexachord, in any chromatic 
universe or even continuous unquantized space, that looks approximately like 
an equiheptatonic hexachord—which is to say, it has six approximately equal 
“small” steps and one large step that is approximately twice as big. Such chords 
can be arranged as clusters, stacks of thirds (i.e., stacks of intervals approximately 
the size of two small steps), or stacks of fourths (stacks of intervals approximately 
the size of three small steps). This is because we can arrange the tertian voicing 
(2, 2, 1, 2, 2) so that the one-step intrinsic interval is the large step, or the (3, 2, 3, 
2, 3) voicing so that both two-step intrinsic intervals span the large step; in each 
case, the result is a fairly even voicing. Such possibilities are easier to see when 
we consider the equiheptatonic scale, but they are also available when we think 
chromatically.

Figure 7.1.  Clustered, tertian, and 
quartal voicings of the hexachord 
F♯–G–A–B♭–C–D. The clustered and 
quartal voicings can be arranged in 
overlapping chains. The letters C, 
T, and Q mark the most clustered, 
tertian, and quartal possibilities.
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Our collection of twelve hexachords contains all of the tertian eleventh 
chords except the hexatonic collection. This fact underwrites an important 
improvisational idiom in which players alternate between the two component 
triads, reordering and occasionally omitting notes (Figure 7.3). This tactic rep­
resents a melodic expression of the hexachord’s characteristically tertian voicing, 
(2, 2, 1, 2, 2), a relation that can be made manifest by reordering and reregistering 
each triad. Each triad is an 0246 set contained within the hexachord considered 
as a six-note scale—that is, every other note of the hexachord, just as the whole-
tone set contains every other note of the chromatic aggregate. The tertian voicing 
arranges the two 0246 collections with one hexachordal step between them. For a 
tertian hexachord, this single intrinsic step can be chosen to be approximately the 
same chromatic size as the two-step intrinsic intervals within each triadic 0246 
subset. Hexachords are suspended between worlds, small enough to function as 
chords and large enough to be small scales.

The quartal voicing makes similar use of 036 hexachordal sets, each bisect­
ing the hexachord the way the tritone bisects the chromatic scale. These are off­

Figure 7.2.  Quintal, tertian, and clustered voicings in Berg’s Violin Concerto. In the last case, we 
have a chord progression whose efficient upper-voice counterpoint produces a cluster.

Figure 7.3.  Improvising by 
alternating a hexachord’s 
intrinsic 0246 sets.
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set to form the sequence (3, 2, 3, 2, 3), with each two-step interval containing 
the large hexachordal step. Figure 7.4 shows that this arrangement produces 
what David Lewin (1987) called a “retrograde inversional chaining” of the hexa­
chord’s 0136 trichords; the chain passes through each of the hexachord’s 0136 and 
0236 sets and articulates all of its quartal voicings. This means that musicians 
can play 0136 trichords (measured within the hexachord itself, considered as a 
scale) to produce mostly quartal resultants (measured chromatically; see Figure 
7.5). Something similar can also be done with the hexachord’s 0126 clusters. Each 
of the hexachord’s intrinsic trichordal set-classes can thus be associated with a 
cyclic voicing: 0126 generates the clustered voicing, 0246 the tertian voicing, and 
0136 the quartal voicing. The idioms in this paragraph partition the hexachord 
into nearly cyclic trichords, both when measuring within the hexachord and 
when measuring chromatically.

Figure 7.5.  Improvising using hexachordal 0136 (top) and 0126  
(bottom) sets.

Figure 7.4.  The quartal hexachordal voicing chains together  
hexachordal 0236 and 0136 sets.
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We can embed the fifty hexachords in the seven Pressing scales as follows:

	 1.	 Complete six-note scales (2): 02468A, 014589;
	 2.	 Six notes of a seven-note scale (13): 013468, 013469, 013478, 013479, 013568, 

013569, 013578, 013579, 014579, 023568, 023579, 023679, 024579;
	 3.	 Purely octatonic subsets (3): 013467, 014679, 013679;
	 4.	 No embedding (32): 012345, 012346, 012347, 012348, 012356, 012357, 

012358, 012367, 012368, 012369, 012378, 012456, 012457, 012458, 012467, 
012468, 012469, 012478, 012479, 012567, 012568, 012569, 012578, 012579, 
012678, 013457, 013458, 014568, 023457, 023458, 023468, 023469.

The first three categories can be described in two separate ways: they contain 
all the hexachords that do not contain consecutive semitones (an 012 chromatic 
cluster), and they are all the hexachords that can be formed by superimposing 
two triads (major, minor, diminished, or augmented).63 Figure 7.6 shows that 
these augment the tertian hexachords of our first categorization with the remain­
ing tertian hexachord (the hexatonic scale) and five near-tertian hexachords. 
This latter group includes two octatonic hexachords that are unique insofar as 
their two triadic roots are not hexachordally adjacent. All of these can be voiced 
in clustered, tertian, and quartal ways.

The chunking method provides the most nuanced view of the hexachordal 
universe:

	 1.	 Clusters (20): 012345, 012346, 012356, 012357, 012456, 012457, 013457, 
013467, 023457, 0234682, 02468A2, 0124673, 01246823, 0134683, 0135793, 
0235683, 013568, 013578, 023579, 024579;

	 2.	 Tertian (13): 014589, 01346913, 01347813, 01356913, 01457913, 0134683, 
0135793, 0235683, 0236791, 013568, 013578, 023579, 024579;

	 3.	 Quartal (9): 012678, 0125671, 0125781, 01256812, 0236791, 013568, 013578, 
023579, 024579;

	 4.	 Equipollent (5): 012469123, 013479123, 014568123, 01367913, 01467913;

Figure 7.6.  Tertian and near-tertian hexachords contained in the  
Pressing scales.

63  The Pressing scales contain all the nonchromatic hexachords that do not contain 012 subsets: one cannot form an 012 by 
superimposing triads; conversely, one can form all the nonchromatic hexachords by superimposing triads.

D
ow

nloaded from
 http://read.dukeupress.edu/journal-of-m

usic-theory/article-pdf/67/1/1/1973785/1tym
oczko.pdf?guestAccessKey=1f7c6515-12d0-4c5d-9759-2b0eb8eedee3 by guest on 18 June 2023
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	 5.	 Noncyclic (15): 012348, 012369, 012378, 0123471, 0123581, 0123671, 
0123681, 0234581, 0234691, 01245812, 01345812, 01247813, 01247913, 01257913, 
01256923.

Boldface collections appear in two categories, while bold italic collections appear 
in three. As before, there is substantial overlap between categories, with four 
hexachords being clustered, tertian, and quartal, four hexachords belonging to 
two categories, and many others being close to multiple categories.

At first sight, this looks similar to the lists we have been considering, group­
ing hexachords into manageable and roughly equal-sized categories. But this 
impression is somewhat misleading, as the categories are more musically and 
psychologically fragile than their lower-cardinality analogues. First, it does not 
make sense to divide the hexachords into cluster, tertian, and quartal when so 
many hexachords belong to multiple groups. Second, because our ears are more 
tolerant as chords get larger, 012578 can sound reasonably clustered and tertian 
despite not being exactly so. With larger chords, such terms as cluster, tertian, and 
quartal are better understood as ways of deploying sets rather than as classifica­
tions of sets in themselves.

Figure 7.7 presents the basic cyclic voicings for the 012578 hexachord used in 
Schoenberg’s violin concerto; in the preceding list it is categorized as quartal and 
nearly clustered. The figure identifies its maximally clustered, tertian, and quar­
tal voicings: D♯–E–F♯–A–A♯–B (cluster), E–A–B–D♯–F♯–A♯ (tertian), and F♯–B–
E–A♯–D♯–A (quartal, appearing in Figure 1.8 as a smeared variant). The quartal 
voicing is exact, while the clustered and tertian voicings are a semitone away from 
exactly qualifying. I am more interested in the fact that this hexachord can be made 
nearly clustered, tertian, and quartal than in the fact that the quartal voicing is 

Figure 7.7.  Clustered, tertian, and 
quartal voicings of the hexachord 
from Schoenberg’s Violin Concerto. 
The asterisk and dagger mark the 
voicings used in Figure 1.8. The 
hexachord marked with the dagger 
appears inverted.
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just a tad more regular than the others. In other words, I consider the voicings in  
Figure 7.7 to be more or less equally good compositional starting points.

Many chord-classification schemes assume that complements share the 
same intrinsic quality, but this is not true of our method; for example, the hexa­
chord 023568 is clustered, tertian, and quartal (or nearly so on the chunking 
method), while its complement, 023469, is noncyclic (though nearly clustered 
on the chunking method). Personally, I think this is a virtue, as I do not find 
complements to be aurally similar.64 While there may be particular styles in 
which complements behave similarly, I do not think we should elevate this genre- 
specific fact to a general theoretical principle.65 Nor should we let the desire for 
taxonomic simplicity override the possibility that very large chords might be 
more homogeneous than their complements; indeed, I find nine-note collec­
tions hard to distinguish when played as close-position simultaneities, whereas 
trichords are instantly recognizable. Complements can sound very different, and 
large collections require new compositional strategies.

8. Large sets

Approximate set theory breaks down as we consider larger and larger chords. 
Clearly, scalar embedding and equiheptatonic quantization will fail with large 
sets: a typical eight-note set will not belong to any familiar scale, and equihep­
tatonic quantization will send distinct chromatic pitch classes to the same equi­
heptatonic target.66 Formally, however, the chunking method continues to work:

	 1.	 Clusters (26): 0123456, 0123457, 0123467, 0123567, 0123468, 0123568, 
0124568, 0123578, 0124578, 0123579, 0234568, 0134568, 0234579, 0234679, 
0134578, 01246783, 01245792, 01345792, 013567923, 01246792, 01346793, 
012468A3, 0124689, 0134689, 013468A, 013568A;

	 2.	 Tertian (9): 01245891, 01346793, 012468A3, 01256891, 01246792, 0124689, 
0134689, 013468A, 013568A;

	 3.	 Quartal (9): 01236781, 01236791, 01256791, 01246792, 01256891, 0124689, 
0134689, 013468A, 013568A;

	 4.	 Equipollent (3): 01235691, 01245691, 01456791;
	 5.	 None (4): 01234581, 01234781, 01234691, 01234791.

Once again we see substantial overlap among the tertian and quartal categories: all 
but one tertian heptachord and all but three quartal heptachords belong to a sec­
ond category. “Clusteredness” is becoming a default, with 68 percent (26 of 38)  

64  Since a chord can be paradigmatically clustered while its complement fails to be, our three categorization schemes lack 
what Quinn (2006) calls the “prototype complementation property.”

65  Forte (1972) argues that the presence of both a set and its complement indicates its structural significance; this means 
that the presence of complementation is not so much a discovery about a particular piece or style as it is an analytical ide-
al—a criterion of analytical goodness rather than an empirical observation.

66  In principle, this need not be considered problematic, but I find it counterintuitive.
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of the heptachords being clustered compared with 40 percent (20 of 50) of the 
hexachords.

For octachords the domination by cluster becomes even more severe, with 
86 percent (25 of 29) belonging to that category:

	 1.	 Clusters (25): 01234567, 01234568, 01234578, 01234579, 02345679, 
012346783, 012346793, 013456793, 0124678A23, 01235678, 01235679, 
01245679, 012357892, 012457892, 012346893, 0123468A3, 0134679A3, 
01235689, 01245689, 0123568A, 0124568A, 0123578A, 0124578A, 
01345689, 0134578A;

	 2.	 Triads (12): 012345891, 012346893, 0123468A3, 0134679A3, 01235689, 
01245689, 0123568A, 0124568A, 0123578A, 0124578A, 01345689, 
0134578A;

	 3.	 Quartal (14): 012367891, 01235678, 01235679, 01245679, 012357892, 
012457892, 01235689, 01245689, 0123568A, 0124568A, 0123578A, 
0124578A, 01345689, 0134578A;

	 4.	 Equipollent: 0123478913;
	 5.	 None: 012345691.

I will not list the possibilities for the nonachords: all twelve can be expressed as 
stacks of seconds, and all but two can be expressed as stacks of thirds; half can be 
expressed as stacks of fourths.

I provide this information mainly to satisfy the reader’s curiosity. My own 
belief is that for large chords the terms clustered, tertian, and quartal largely lose 
their utility as descriptors of intrinsic intervallic content; instead, they are bet­
ter conceived as indications of how chords can be used. This may strike some 
readers as a weakness of approximate set theory, particularly when compared to 
alternatives that purport to offer universally valid systems of chord classification. 
But almost all of these alternatives require that listeners perceive large collections 
with a high degree of accuracy, keeping an exact count of every interval they hear.

The problem is that set theory’s perceptual challenges are magnified when 
it comes to larger sets. Set theorists often tacitly assume that every set-class is 
equally distinctive and identifiable—an assumption that is problematic in the 
case of small sets and doubly so as sets grow larger.67 My experience is instead 
that quality-space contracts as cardinality increases: while a few large collections 
might shine forth as particularly recognizable (e.g., the diatonic and octatonic 
scales), larger chords tend to be less distinct than smaller chords. The limita­
tions of approximate set theory may therefore reflect something psychologically 
important; perhaps as collections grow they fade into the chromatic background.

In other words, composers need to work to make large collections sound 
special. This is in many ways a very familiar point. Numerous theorists have 
noticed that the principle of inversional equivalence breaks down as chords grow: 
in Gustav Mahler’s or Debussy’s work the notes C–E–G–A can function either as 
C major or A minor, and this means that chordal identity is no longer determined 

67  This is most charitably described as an idealization. The question is how useful the idealization is (Tymoczko 2020a).
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by pitch-class content; instead, voicing and pitch structure—and particularly the 
bass—play a crucial role. What I am suggesting is that something similar may 
occur in the atonal domain. There are many different ways to hear a large pitch-
class set, with “undifferentiated,” “gray,” and “chromatic” being among the easiest.

Perhaps the most broadly useful strategy is to divide larger sets into (pos­
sibly overlapping) subsets that are separated registrally or temporally. Figure 8.1 
shows Dmitri Shostakovich using this technique with a nine-note scale that is 
the minor triad’s complement; he divides the collection into two octatonic sub­
sets, each kept separate from the other. My colleague Rudresh Mahanthappa has 
developed a similar technique for working with hexachords: frequently, he breaks 
hexachords into a pair of trichords, moving back and forth between them but 
freely reordering each (Figure 8.2). This strategy is also characteristic of Barry 
Harris’s playing, which decomposes nearly even eight-note scales into a stable tet­
rachord (usually a dominant seventh or added-sixth chord) and an embellishing 
diminished seventh, each containing every other note of the scale (Figure 8.3).  

Figure 8.2.  A Mahanthappa-style line partitioning of the 01347B hexachord into a  
major triad (open note heads) and a 024 subset. The line uses transpositions on C and F♯.

Figure 8.1.  Shostakovich using time and register to articulate the different octatonic  
fragments of a nine-note scale in mm. 51–56 (A) and mm. 66–72 (B) of the Seventh String  
Quartet, III.
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These partially ordered collections are intermediate between the unordered col­
lections of set theory and completely ordered twelve-tone rows. What is interest­
ing is that they are both audible to the listener and flexible enough to be used in 
improvisation; in effect, large collections become little chord progressions.

Set theory, whether exact or approximate, is most useful when dealing 
with collections that can be heard as gestalts. This becomes harder and harder 
to do as collections grow: even six-note chords can be difficult to distinguish 
when presented as staccato chords. Larger collections thus tend to function as  
composites—scale-like sources of material, rarely present at any one moment. 
Exploring the boundary between these two musical regimes is a matter for 
another article.

9. Conclusion

Approximate set theory combines several interlocking ideas. Its most general 
claim is that music presents a broad spectrum of organizational possibilities. We 
are familiar with its exact end—the domain of canon and twelve-tone rows—
where notes are rigidly interrelated. At the other extreme are pieces that ask us to 
adopt very general categories rooted in texture and gesture. Neither approximate 
nor exact set theory provides a unified description of all the chords of Figure 9.1, 
yet they are palpably similar, combining close-position sonorities in very high 
and low registers. Composers have made effective use of these sorts of categories, 
writing music in which the specific notes are less important than register, articu­
lation, dynamics, and timbre. Music theory should not ignore this possibility just 
because it is difficult to formalize.

Somewhere toward the middle of the spectrum we find music that can be 
analyzed using the tools of approximate set theory. These tools include both the 
heuristic chord categories of cluster, tertian, quartal, and equipollent and a new 
form of exact set theory that measures intervals along the intrinsic scale. From 
this perspective every chord presents multiple sets simultaneously: a chromatic 
pitch-class set, a scalar pitch-class set, and a voicing measured along the intrinsic 

Figure 8.3.  Barry Harris alternating between 0246 tetrachords of  
an eight-note scale, each decorated with an appoggiatura. The  
example comes from Bicket 2001.
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scale. Attending to these different levels of structure reveals resemblances that 
might otherwise escape our notice. Rather than treating the “So What” and 
“Farben” chords as completely unrelated, we can say they are both open-position  
pentachords. Rather than saying “Pierrot Lunaire starts with a lot of thirds,” 
we can say “Schoenberg uses the (2, 1, 2) voicing to bring out the equipollent 
tetrachord’s tertian quality.” This is an improvement not because it translates 
intuitive composerly practice into cryptic academic jargon (though that may 
have its advantages when it comes to tenure committees) but because it allows 
us to understand the particular techniques that constitute intuitive musical  
knowledge—helping us say exactly what composers are doing when they write 
a lot of thirds.

One attractive feature of this approach is that it creates affinities between 
sets of different sizes. The basic objects of Anton Webern’s op. 7/3 are clusters 
or superimpositions of clusters (Figure 9.2). The accompanimental sets are all 
presented as transpositional combinations, one half of the chord transposing 
the other in pitch. We begin with a sequence of tetrachords whose semitonal 
pairs expand systematically: A–B♭–C♯–D, A–B♭–D–E♭, A♭–A–D–E♭.68 We then 
hear a two-note cluster (the minor ninth), a three-note cluster (which I inter­
pret, somewhat poetically, as a multiset that contracts the semitone pairs until 
they overlap), and a six-note approximate cluster. These collections are all voiced 
regularly as gapped and smeared stacks of seconds, thirds, and fourths: most of 
the voicings superimpose semitones, major sevenths, or minor ninths; the third 
and fourth chords, however, sublimate the clustered structure, combining semi­
tone with major seventh. Meanwhile, the lyrical piano line presents a series of 
chromatic sets that are not regularly voiced or arranged as transpositional com­
binations; their freer registration perhaps reflects their status as primary melody 
(Figure 9.2B).69 The melodic note B does not belong to any chromatic cluster, 

Figure 9.1.  A series of audibly similar sonorities, none of which  
are exactly related to the others.

68  This transpositionally symmetrical arrangement might be described as a Schoenbergian “motive of the accompaniment” 
(Schoenberg 1967: 83). As Richard Cohn (1988, 1991) emphasizes, these sets tend to be inversionally symmetrical. The initial 
expansion can be understood with the theory of K-nets; in my notation it involves the transpositions T1/2 and T–1/2 operating on 
equivalence classes of strongly isographic chords (Tymoczko 2007).

69  Lewin (1987, chap. 5) provides an exact set-theoretical analysis that is instructively different from mine.
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but it does form an approximate cluster with all of the semitonal clusters in the 
melody.70 Overall, the piece seems less concerned with set-theoretic exactitude 
than with more elusive similarities and differences: the affinity between clus­
ters of various sizes, both chromatic and approximate; the contrast between the 
accompaniment’s symmetrical voicings and the melody’s asymmetrical registra­
tion; the resemblance between the piano’s first sonority (a gapped tertian struc­
ture comprising two augmented triads a major seventh apart, each missing the 
same note) and its last (a gapped tertian structure comprising two diminished 
seventh chords a minor ninth apart, each missing the same note); and so on.

Approximate set theory thus stands at the intersection of many different 
kinds of thinking: tonal and nontonal, scalar and nonscalar, compositional and 
improvisational, pitch and pitch class. Many of the phenomena we have exam­
ined are easy to recognize when we are thinking inside a seven-note scale; in dia­
tonic space, for example, it is clear that the pentachord 012457 is quartal (251407) 

Figure 9.2.  Webern’s op. 7/3. A. The accompanimental collections used in the piece. B. The lyrical 
piano melody. In the “transp. combination” row the letters A, B, C, etc., refer to the numbers 10, 11, 
12, etc.

70  The lyrical melody combines with the violin accompaniment (chords 3 and 4 on Figure 9.2A) to present every chromatic 
note except G.
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while also being a gapped stack of seconds (012•457) and thirds (1•50247).71 It 
is not obvious that similar possibilities would be available in the purely chro­
matic world. But consider the pentachord G–A–C–C♯–D, classified as noncy­
clic by each of the three systems discussed here. Figure 9.3 voices the chord as a 
stack of near fourths, D–A–C♯–G–C (which would be quartal were A lowered 
by semitone); as a gapped cluster, GA•CC♯D; and a gapped stack of near thirds, 
C♯•ACDG, which would be gapped tertian were D raised by semitone. Approx­
imate set theory highlights these possibilities, repurposing seemingly tonal con­
cepts as tools for understanding the chromatic domain.

This perspective also alerts us to an important change that occurs as collec­
tions grow: for smaller cardinalities, adjectives such as tertian and quartal can be 
taken either as descriptions of pitch-class content or as ways of arranging notes 
in register; with larger sets the latter meaning is primary. It makes relatively lit­
tle sense to talk about tertian hexachords as opposed to quartal hexachords, for 
the very collections that can be arranged as stacks of thirds can typically also be 
arranged as stacks of fourths. By emphasizing the approximate nature of music 
perception, we draw attention to the point at which approximate categories break 
down. This is close to the boundary between chord and scale, the point at which 
we stop being able to conceive of musical objects as unified gestalts. Understand­
ing this boundary, and the techniques composers use to work with larger collec­
tions, is a topic for future work.

About fifteen years ago, one of my teachers—an eminent composer edu­
cated in the European avant-garde tradition—heard me lecture about voice-lead­
ing geometry. After my talk he complained that I had talked only about pitch class 
and not about pitch. Being proud of my ideas and a little stung by his criticism, 
I responded by accusing him of being reflexively antitheoretical. “Don’t you feel 
that the different voicings of a C-major triad sound noticeably similar,” I asked, 
“at least so long as we avoid extremes of register and spacing?” (One should imag­
ine this sentence illustrated by an irritating plunking out of C-major chords, each 
voiced differently.) Having thought about the matter for another decade and a 

Figure 9.3.  A nearly quartal pentachord, voiced as  
a stack of near fourths, as a gapped cluster, and as  
a gapped stack of near thirds.

71  A number of diatonic theorists (e.g., Herrlein 2011) have noticed various phenomena discussed in this article.
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half, I have come to appreciate his position: as chords get larger, arrangement 
in pitch starts to matter more than intrinsic pitch-class content. In other words, 
both of us had good points. With small cardinalities abstract pitch-class struc­
ture is often perceptible and important, but as chords grow, the relative priority 
of pitch and pitch class reverses. Exactly where this happens is a complex matter 
that can differ from listener to listener and from context to context. This leaves us 
in the challenging situation where there is no generally applicable model of pitch. 
Music is difficult because it requires us to balance overlapping and sometimes 
incompatible logics.

A basic challenge of twenty-first-century theory is the divergence between 
theory and practice. It is easy to frame this as a conflict between theorists and 
everyone else, and it is certainly true that theorists have made problematic 
assumptions about what is audible or aesthetically significant. But the divergence 
can also be seen within the activity of music making, in the gap between listen­
ers’ experience and the rigid structures manipulated by music makers—whether 
pitch-class sets, superimposed interval cycles, twelve-tone rows, spectral analyses 
of audio signals, Fibonacci numbers, or prolongational graphs. Approximate set 
theory aspires to bridge this gap, providing categories that are resilient to a cer­
tain degree of perceiver error. In this way it gestures toward a music theory that 
is both approximate and informative. We know how to do theory in an idealized 
environment where listeners accurately perceive every musical detail. Can we 
learn to do it in a way that forthrightly acknowledges human limitation?

10. Appendix

This appendix provides technical details about voicing, the Fourier transform, 
and the notion of evenness.

(a) Voicing

As explained in section 1, we can model voicings as intrinsic intervals measured 
between the adjacent notes of a chord, proceeding upward from the bottom. 
Given an n-note voicing (x1, x2, . . . , xn–1), we can reverse its intervals to form 
the retrograde (xn–1, xn–2, . . . , x1), turning E3–C4–G4–A4–B4 or (4, 2, 1, 1) into  
E3–G3–A3–C4–B4 or (1, 1, 2, 4).72 The inversion of a voicing (–x1, –x2, . . . , –xn–1)  
turns its intervals upside down so that the bottom note of the original chord 
becomes the top note of the inversion; this is the same as the retrograde if we 
order notes by pitch. If the intervals lie between unison and octave, then we can 
define a second notion of inversion that replaces each interval with its octave 
complement (n – x1, n – x2, . . . , n – xn–1); this turns E3–C4–G4–A4–B4 or  

72  As Yust points out, reversing the intervals in an ordered series produces the “retrograde inversion” of twelve-tone theory; 
conversely, my use of retrograde inversion refers to the twelve-tone retrograde. The change in terminology arises because voic
ings are defined by intervals rather than as notes. This is also why an n-note voicing is represented by n – 1 numbers.
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(4, 2, 1, 1) into E3–G3–C4–B4–A5 or (1, 3, 4, 4), with each interval i becoming  
5 – i.73 The retrograde inversion (n – xn–1, n – xn–2, . . . , n – x1) is interesting because 
it can be used to retrograde a concrete voicing’s pitch classes, turning E3–C4–
G4–A4–B4 or (4, 2, 1, 1) into B2–A3–G4–C5–E5 or (4, 4, 3, 1). This turns clus­
tered voicings into septimal voicings, tertian into sextal, and quartal into quintal. 
If we limit ourselves to voicings in which notes are less than one octave from 
their neighbors, and if we group voicings by the four twelve-tone operations, we 
obtain one class of trichordal voicing, three classes of tetrachordal voicing, eight 
classes of pentachordal voicing, and thirty-eight classes of hexachordal voicing 
(Figures A1, A2).74 These are also the different tone-row classes of the associated 
low-cardinality universes.

A cyclic voicing is a voicing that can be used to express an exact interval 
cycle—that is, a voicing that can be embodied by a collection of pitches each 
the same distance above its lower neighbor. Cyclic voicings are retrograde sym­
metrical and shown on Figures A1 and A2 with open note heads.75 If the voicing  

73  Limiting intervals to less than an octave yields a variant of what Morris 1995 calls PCINT equivalence. There is nothing intrin
sically wrong with voicings that have more than an octave between adjacent notes; when cataloguing voicings, however, it is 
helpful to consider them variants of their compact analogues.

74  Weber (1817–21) 1846: 184 (§63) identifies the voicings of three- and four-note chords. Harrison 2014 independently 
reconstructs Weber’s list.

75  Since interval cycles are inversionally symmetrical in pitch, their spacing in intrinsic steps must be retrograde 
symmetrical.

Figure A1.  The basic trichordal, tetrachordal, and pentachordal voicings,  
categorized by the standard twelve-tone operations. Cyclic voicings are shown  
with open note heads. Numbers show the spacing in intrinsic steps.
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(x1, x2, . . . , xn–1) is cyclic, then (x1 + n, x2 + n, . . . ​xn–1 + n) is also cyclic, as it 
simply adds an octave to the generating interval. If a cyclic voicing’s generating 
interval is less than an octave, then its inversion (n – x1, n – x2, . . . , n – xn–1) is also 
cyclic. A primitive cyclic voicing is a cyclic voicing that can express an exact inter­
val cycle whose generating interval lies between zero and half an octave. For an 
n-note chord, there are n – 2 primitive cyclic voicings of the form (1, 1, . . . , 1), 
(2, 1, 1, . . . , 1, 2), (2, 2, 1, . . . , 1, 2, 2), (2, 2, . . . , 2), (3, 2, 2, . . . , 2, 3), and so on. 
The boundaries between the cyclic voicings are determined by the values of g for 
which the interval between the chord’s first and ith notes is an octave, with 2 ≤ i 
≤ n. Reading upward from the bottom of Figure 1.3, these are 6, 4, 3, 2.4, 2, . . . , 
or 12/2, 12/3, 12/4, 12/5, 12/6, . . . . ​A well-formed cyclic voicing has only one 
type of intrinsic interval; in Figure 1.3 these are close position (1, 1, 1 . . .), open 

Figure A2.  The basic hexachordal voicings.
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position (2, 2 , . . .), and the unnamed (3, 3, . . .).76 A clustered chord is a chord 
that can be voiced with each note one or two semitones above its lower neigh­
bor; a tertian chord can be voiced with each note three or four semitones above 
its lower neighbor; and a quartal chord can be voiced with each note either five or 
six semitones above its lower neighbor. These categories roughly match the num­
bers on Figure 1.3, corresponding to 12/2 > g > 12/3 (quartal), 12/3 > g > 12/4 
(tertian), and 12/6 ≥ g (clustered). This is the mathematical link between intrin­
sic voicings and approximate set-class categories.

Throughout the article, I have made statements such as “for any pentachord, 
the open-position voicing will make it most nearly quartal.” The theory of voice 
leading justifies these claims. Let us say that a chord is completely quartal when it 
is voiced as an exact stack of perfect fourths (or, generalizing the argument, some 
other interval). A completely quartal chord will use the relevant cyclic voicing 
on Figure 1.3. We can get a continuous measure of “fourthiness” (or, more gen­
erally, cyclicality) by calculating the voice-leading distance from any voicing to 
the nearest completely quartal voicing. It can be shown that for any reasonable 
measure of voice-leading size, there will always be a minimal voice leading that 
is “strongly crossing free”—connecting two chords spaced in the same pattern of 
intrinsic steps (Tymoczko 2011). Thus, we can minimize the distance from any 
pitch-class set to the nearest completely quartal chord by voicing it in the appro­
priate cyclic voicing.77

(b) Approximate interval cycles and the Fourier transform

Central to Ian Quinn’s work is the proposal that the Fourier transform provides 
a continuous measure of chord quality (Quinn 2006, 2007).78 Quinn observed 
that when chords are expressed as histograms (essentially bar graphs or vectors of 
weights assigned to pitch classes) the Fourier transform provides something like 
a continuous version of the interval vector: a six-element list of complex num­
bers representing chordal saturation with various intervals (its degree of “minor  
second-ish-ness,” “major second-ish-ness,” etc.).79 This quantity can be inter­
preted geometrically as proximity to prototypes that are maximally saturated 
with the interval in question.

77  This argument ignores the possibility of adding doublings, as in the quartal F–B♭–E–B♭–E♭ with doubled B♭. We can think 
of this as a pentachordal multiset in open position, F b♭ B♭ e♭ E f B♭ b♭ E♭. For a fixed set of doublings, the argument in the text 
is valid.

78  The program has since been developed in Amiot 2016 and Yust 2016. Readers can visualize the Fourier transform using 
software written by Jennifer Harding: https:​/​/www​.jenndharding​.com​/vectorcalculator.

79  Quinn (2006: 121) cautions against associating Fourier components with specific intervals (the “intervallic half-truth”), 
arguing that it is not possible in all tuning systems. However, it is possible if we allow generating intervals outside the scale: 
Quinn’s primary counterexample, the fourth Fourier component in ten-tone equal-temperament, can be associated with a 
generating interval of 2.5 steps (the twelve-tone equal-tempered minor third).

76  The term well-formed comes from Norman Carey and David Clampitt (1989), whose theory of well-formed scales is struc
turally similar to the theory of cyclic voicings.
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There are many similarities between our approaches. Quinn and I both 
want to replace the isolated points of set theory with something more flexible: 
coarse-grained categories in my case and graded lists of qualia in his. Both of us 
conceive of these categories geometrically, as regions in a space—voice-leading 
space in my case, and the space of Fourier-component magnitudes in his. Both 
of us consider interval cycles to be prototypical, in my case because most equi­
heptatonic sets are cyclic and in his because of the mathematics of the Fourier 
transform; this means that both approaches recall the ideas of pre-set-theoretical  
writers such as Cowell, Hanson, and Persichetti. In both cases our categories 
extend across cardinalities to associate chords of different sizes. In both theories 
the numbers 12/i are important for positive integers i: in Quinn’s because they 
represent the frequencies of his Fourier basis functions, in mine because they 
represent the boundaries between cyclic voicings on Figure 1.3. A main differ­
ence is that my theory involves a greater degree of approximation than Quinn’s: 
his categories correspond to specific chromatic intervals such as “minor second”; 
mine correspond to generic intervals such as “second.”80

One way to make Quinn’s theory more approximate is to quantize equal-
tempered sets to the equiheptatonic scale, taking the Fourier transform of the 
result; the discrete Fourier transform will then have three nontrivial components 
corresponding to the terms clustered, quartal, and tertian. Another possibility is 
to remain in twelve-tone equal temperament but ignore Fourier components 
beyond the third. Collections with a strong first component can be considered 
clustered, those with a strong second component quartal, and those with a strong 
third component tertian. Figure A3 shows that the resulting categorization is 
similar to the others in the text.81 This illustrates a central Quinnian theme: the 
convergence of different approaches to chord categorization.

(c) Evenness and interval cycle

The property of evenness plays an important role in the theory of voice leading: 
the near equality of all the intrinsic intervals of one particular size (e.g., intrin­
sic thirds) allows transposition along a chord to nearly counteract transposi­
tion along the scale, thereby producing efficient voice leading (Tymoczko 2011, 
2020b). Voicing gives us an alternate form of evenness that involves multiple 
types of intrinsic interval: in the quintic tetrachordal voicing C3–F♯3–C♯4–G4, 
the intervals C3–F♯3 and C♯4–G4 span two intrinsic steps, while F♯3–C♯4 spans 
three; what makes this chord quintic is that all of these are equal to six or seven 

80  Since the Fourier transform is invertible, Quinn’s interval vectors are exactly as fine-grained as those of traditional set the
ory. Quinn typically disregards phase, which has the effect of both ignoring transposition and grouping together “Z-related” 
or homometric sets. Nevertheless, the resulting theory is often closer to traditional set theory than to my approximate set 
theory; for example, on Quinn’s view, complementary sets have similar qualia.

81  In making this list I intuitively chose a minimum threshold for a “strong” component; those failing to meet this threshold 
were considered equipollent.
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semitones—and hence that it can be voiced as a nearly even fifth stack. Thus in 
the theory of voice leading we consider the near equality of intrinsic intervals all 
belonging to the same type (i.e., n-step intrinsic intervals); in the theory of voic
ing, we consider the near equality of intervals belonging to multiple types (i.e., 
n- and m-step intrinsic intervals, for two different numbers m and n).

We have also encountered another phenomenon familiar from voice-leading 
geometry: the reappearance of the same abstract structure at multiple hierarchi­
cal levels. The concrete voicing C3–E3–G♯3–B3–D♯4–G4 is a perturbed stack of 
major thirds whose intervals are (4, 4, 3, 4, 4) when measured semitonally—that is, 
an interval cycle in which the generating interval 4 is adjusted to avoid note repeti­
tion: (x, x, x – 1, x, x).82 It is also a cyclic voicing whose intrinsic spacing exhibits the 
same structure: the concrete voicing C3–E3–G♯3–B3–D♯4–G4 has intrinsic spac­
ing (2, 2, 1, 2, 2), a sequence of two-step intrinsic intervals adjusted to avoid note 
repetition. Figure A4 shows that Quinn’s “generic prototypes” can invariably be 
voiced in this way, as exact or minimally perturbed interval cycles both intrinsic and 
extrinsic.83 Broadly speaking, he is interested in these chords’ chromatic or extrin­
sic interval content, whereas I am interested in their intrinsic voicings; in other 
words, we generalize the same objects in different directions. Thus, Quinn places 
C–E–G♯–B–D♯–G and C–E♭–G♭–A–C♯–E in different categories, as prototypes 

trichords tetrachords

Clustered

012, 013, 

024

0123, 0124,

0134, 0135,

0235, 0246

Quartal

016, 026, 

027

0126, 0127,

0156, 0157,

0167, 0257,

0168

Tertian 

037, 048 0145, 0148,

0158, 0248,

0347, 0358

Equipollent

014, 015, 

025, 036

0125, 0136,

0137, 0146

0236, 0237,

0247

Figure A3.  Categorizing small sets  
using the first three Fourier components. 

82  Quinn (2006) notes that many writers have been interested in perturbed interval cycles, including Hanson 1960, Eriksson 
1986, and Headlam 1996.

83  Ordering by the generating interval (semitone, whole tone, major third, etc.) diverges from ordering by Fourier compo
nent (F1, F2, etc.). The characteristic voicing, shown in Figure A4, is determined by the former rather than the latter.
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of the major- and minor-third genera, respectively; I place them in the same cat­
egory, as tertian hexachords voiced (2, 2, 1, 2, 2). (This is reflected on Figure A4 
by the larger categories, cluster, tertian, and quartal, each grouping two different 
columns.) These different interpretations are possible because Quinn’s prototypes 
can be voiced so as to exhibit the same abstract structure on multiple levels— 
minimally perturbed interval cycles (x, x, x ± 1, x, x) whether we consider extrin­
sic semitones or intrinsic steps. As above, so below: this reappearance of similar 
structure at multiple hierarchical levels is one of the deepest and most mysterious 
features of Western music.
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